γ射线 (Gamma ray) ,又称γ粒子流,是原子核能级跃迁退激时释放出的射线,是波长短于0.1埃的电磁波(1埃= $10^{-10}m$),能量高于124keV,频率超过30EHz(3×1019Hz)。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。γ射线对细胞有杀伤力,医疗上用来治疗肿瘤。
γ射线是电磁波的一种,频率比X射线更高。γ射线首先由法国科学家P.V.维拉德发现,是继α、β射线后发现的第三种原子核射线。
首次观测
在20世纪70年代首次被人类观测到的。美国军方发射薇拉(Vela)人造卫星用于探测“核闪光”(nukeflash)(未经授权的原子弹爆破的证据),但是薇拉没有识别出核闪光,而是发现了来自太空的强烈射线爆发。这一发现最初在五角大楼引起了一阵惶恐:是苏联在太空中测试一种新的核武器吗?稍后这些辐射被判定为均匀地来自空中的各个方向,意味着它们事实上来自银河系之外。但如果来自银河系外,它们肯定释放着真正的天文学数量的能量,足以点亮整个可见的宇宙。
太空产生
在太空中产生的伽马射线是由恒星核心的核聚变产生的,因为无法穿透地球大气层,因此无法到达地球的低层大气层,只能在太空中被探测到。太空中的伽玛射线是在1967年由一颗名为“维拉斯”的人造卫星首次观测到。从20世纪70年代初由不同人造卫星所探测到的伽马射线图片,提供了关于几百颗此前并未发现到的恒星及可能的黑洞。于90年代发射的人造卫星(包括康普顿伽马射线观测台),提供了关于超新星、年轻星团、类星体等不同的天文信息。
人工制造
2011年9月,英国斯特拉斯克莱德大学领导的一个科研小组日前制造出一束地球上最明亮的伽马射线——比太阳亮1万亿倍。这将开启医学研究的新纪元。
物理学家们发现超短激光脉冲可以和电离气体发生反应,并产生一束极其强大的激光,它甚至可以穿透20厘米厚度的铅板,要用1.5米厚的混凝土墙才能彻底屏蔽它。
这种超强激光射线有诸多用途,其中包括医学成像,放射性疗法,以及正电子放射断层造影术(PET)扫描。同时这种射线源还可以被用来监视密封存放的核废料是否安全。另外,由于这种激光脉冲极短,持续时间仅1千万亿分之一秒,快到足以捕获原子核对激发的反应,这就使它非常适合用于实验室中的原子核研究。
产生原理
放射性原子核在发生α衰变、β衰变后产生的新核往往处于高能量级,要向低能级跃迁,辐射出γ光子。原子核衰变和核反应均可产生γ射线。其为波长短于0.2埃的电磁波。γ射线的波长比X射线要短,所以γ射线具有比X射线还要强的穿透能力。
伽马射线是频率高于1.5 千亿亿 赫兹的电磁波光子。伽马射线不具有电荷及静质量,故具有较α粒子及β粒子弱之电离能力。伽马射线具有极强之穿透能力及带有高能量。伽马射线可被高原子数之原子核阻停,例如铅或乏铀。
当γ射线通过物质并与原子相互作用时会产生光电效应、康普顿效应和正负电子对三种效应。
康普顿效应
1923年美国物理学家康普顿(A.H.Compton)发现X光与电子散射时波长会发生移动,称为康普顿效应。
γ光子与原子外层电子(可视为自由电子)发生弹性碰撞,γ光子只将部分能量传递给原子中外层电子,使该电子脱离核的束缚从原子中射出。光子本身改变运动方向。被发射出的电子称康普顿电子,能继续与介质发生相互作用。散射光子与入射光子的方向间夹角称为散射角,一般记为θ。反冲电子反冲方向与入射光子的方向间夹角称为反冲角,一般记为φ。当散射角θ=0°,散射光子的能量为最大值,这时反冲电子的能量为0,光子能量没有损失;当散射角θ=180°时,入射光子和电子对头碰撞,沿相反方向散射回来,而反冲电子沿入射光子方向飞出,这种情况称反散射,此时散射光子的能量最小。
光电子与普通电子一样,能继续与介质产生激发、电离等作用。由于电子壳层出现空位,外层电子补空位并发射特征X射线。但该光人眼不可见,频率最高,波长最短(波在真空中v=c光速,c=λf,λ波长,f频率)。
电子对效应
能量大于1.02MeV的γ光子从原子核旁经过时,在原子核的库仑场作用下,γ光子转变成一个电子和一个正电子。光子的能量一部分转变成正负电子的静止能量(1.02MeV),其余就作为它们的动能。被发射出的电子还能继续与介质产生激发、电离等作用;正电子在损失能量之后,将与物质中的负电子相结合而变成γ射线,即湮没(annihilation),探测这种湮没辐射是判明正电子产生的可靠实验依据。
相干散射
对低能光子(能量远小于电子静止能量)来说,内层电子受原子核束缚较紧不能视为自由电子。如果光子和这种束缚电子碰撞,相当于和整个原子相碰,碰撞中光子传给原子的能量很小,几乎保持自己的能量不变。这样散射光中就保留了原波长。称为汤姆逊散射(Thomson scattering)或瑞利散射(Rayleigh scattering)或相干散射(coherent scattering)。由于内层电子的数目随散射物原子序数的增加而增加,外层电子所占比例降低,所以波长不变的散射光子强度随之增强,而波长变长的康普顿散射光子强度随之减弱。
瑞利相干散射引起的散射光子限制在小角度范围内。即其光子角分布在光子的前进方向有尖锐的峰,偏转光子的能量损失可以忽略。随着散射光子散射角φ增大,波长不变的瑞利散射光子相对强度逐渐减弱,而波长变长的康普顿散射光子相对强度逐渐增强,同时波长的改变量也逐渐增大。
光致核反应
也称为光核吸收,大于一定能量的γ光子与物质原子的原子核作用,能发射出粒子,例如(γ,n)反应。但这种相互作用的大小与其它效应相比是小的,所以可以忽略不计。光核吸收的阈能在5MeV或更高,这种过程类似于原子光电效应,但在这一过程中光子为原子核所吸收而不是由围绕核转动的壳层电子,光核吸收一般会引起中子的发射。光核吸收最显著的特点是“巨共振”(giant resonance)。光核反应中的巨共振是一种偶极共振,它来自γ光子所引起的核的电偶极激发,称为巨偶极共振(Giant Dipole Resonance,GDR)。对于轻核,吸收截面的中心约在24MeV。随着靶核质量数增加,中心能量减小,巨共振峰的位置也随之减小,最重的稳定为12MeV,巨共振的宽度(相应于半最大高度截面的能量差)随靶核而变化,大约为3-9MeV。即使是共振峰,光核截面比前面提到的光电截面要小,它对总截面的贡献小于10%,然而在辐射屏蔽设计中,光核吸收很重要,因为所发射的中子比入射的光子在重核中具有更大的穿透性。在辐照技术中引起的放射性显得更重要。
核共振反应
入射光子把原子核激发到激发态,然后退激时再放出γ光子。
前三种相互作用影响最大,如图1所示。对于窄束γ射线(即通过吸收片后的γ光子仅由未经相互作用或称为未经碰撞的光子所组成),μ记作γ射线穿过吸收介质的总线性衰减系数,它包含了γ光子真正被介质吸收和被散射离开准直的两种贡献。有的研究直接将μ表述为总吸收系数,μ相当于介质对γ射线的宏观吸收截面,μ的量纲为长度的倒数,显然μ值反映了介质对于γ射线的吸收能力。
对于低能γ射线和原子序数高的吸收物质,光电效应占优势;对于中能γ射线和原子序数低的吸收物质,康普顿效应占优势;对于高能γ射线和原子序数高的吸收物质,电子对效应占优势。三者相对强弱可表示为图2。光子能量在100keV至30MeV范围内,后三种次要次要的相互作用方式对于γ射线的吸收所做的贡献小于1%
现象
在天文学界,伽马射线爆发被称作“伽马射线暴”。究竟什么是伽马射线暴?它来自何方?它为何会产生如此巨大的能量?
“伽马射线暴是宇宙中一种伽马射线突然增强的一种现象。”中国科学院国家天文台赵永恒研究员说,伽马射线是波长小于0.1纳米的电磁波,是比X射线能量还高的一种辐射,伽马暴的能量非常高。但是大多数伽马射线会被地球的大气层阻挡,观测必须在地球之外进行。
冷战时期,美国发射了一系列的军事卫星来监测全球的核爆炸试验,在这些卫星上安装有伽马射线探测器,用于监视核爆炸所产生的大量的高能射线。侦察卫星在1967年发现了来自浩瀚宇宙空间的伽马射线在短时间内突然增强的现象,人们称之为“伽马射线暴”。由于军事保密等因素,这个发现直到1973年才公布出来。这是一种让天文学家感到困惑的现象:一些伽马射线源会突然出现几秒钟,然后消失。这种爆发释放能量的功率非常高。一次伽马射线暴的“亮度”相当于全天所有伽马射线源“亮度”的总和。随后,不断有高能天文卫星对伽马射线暴进行监视,差不多每天都能观测到一两次的伽马射线暴。
伽马射线暴所释放的能量甚至可以和宇宙大爆炸相提并论。伽马射线暴的持续时间很短,长的一般为几十秒,短的只有十分之几秒。而且它的亮度变化也是复杂而且无规律的。但伽马射线暴所放出的能量却十分巨大,在若干秒钟时间内所放射出的伽马射线的能量相当于几百个太阳在其一生(100亿年)中所放出的总能量!
在1997年12月14日发生的伽马射线暴,它距离地球远达120亿光年,所释放的能量比超新星爆发还要大几百倍,在50秒内所释放出伽马射线能量就相当于整个银河系200年的总辐射能量。这个伽马射线暴在一两秒内,其亮度与除它以外的整个宇宙一样明亮。在它附近的几百千米范围内,再现了宇宙大爆炸后千分之一秒时的高温高密情形。
然而,1999年1月23日发生的伽马射线暴比这次更加猛烈,它所放出的能量是1997年那次的十倍,这也是人类迄今为止已知的最强大的伽马射线暴。
争论
关于伽马射线暴的成因,至今世界上尚无定论。有人猜测它是两个中子星或两个黑洞发生碰撞时产生的;也有人猜想是大质量恒星在死亡时生成黑洞的过程中产生的,但这个过程要比超新星爆发剧烈得多,因而,也有人把它叫做“超超新星”。