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PREFACE.

THE fact that certain bodies, after being rubbed,
appear to attract other bodies, was known to the
ancients. In modern times, a great variety of other
phenomena have been observed, and have been found
to be related to these phenomena of attraction. They
have been classed under the name of Electric phe-
nomena, amber, extpor, having been the substance
in which they were first described.

Other bodies, particularly the loadstone, and pieces
of iron and steel which have been subjected to certain
processes, have also been long known to exhibit phe-
nomena of action at a distance. These phenomena,
with others related to them, were found to differ from
the electric phenomena, and have been classed under
the name of Magnetic phenomena, the loadstone, uasyvns,
being found in the Thessalian Magnesia.

These two classes of phenomena have since been
found to be related to each other, and the relations
between the various phenomena of both classes, so
far as they are known, constitute the science of Elec-
tromagnetism.

In the following Treatise I propose to describe the
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most important of these phenomena, to shew how they
may bhe subjected to measurement, and to trace the
mathematical connexions of the quantities measured.
Having thus obtained the data for a mathematical
theory of electromagnetism, and having shewn how
this theory may be applied to the calculation of phe-
nomena, I shall endeavour to place in as clear a light
as I can the relations between the mathematical form
of this theory and that of the fundamental science of
Dynamics, in order that we may be in some degree
prepared to determine the kind of dynamical pheno-
Imena among which we are to look for illustrations or
cxplanations of the electromagnetic phenomena.

In describing the plienomena, I shall select those
which most élearly illustrate the fundamental ideas of
the theory, omitting others, or reserving them till the
reader is more advanced.

The most important aspect of any phenomenon from
a mathematical point of view is that of a measurable
quantity. I shall therefore consider electrical pheno-
mena chiefly with a view to their measurement, de-
scribing the methods of measurement, and defining
the standards on which they depend.

In the application of mathematics to the calculation
of clectrical quantities, I shall endeavour in the first
place to deduce the most general conclusions from the
data at our disposal, and in the next place to apply
the results to the simplest cases that can be chosen.
I shall avoid, as much as I can, those questions which,
though they have elicited the skill of mathematicians,
have not enlarged our knowledge of science.
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The internal relations of the different branches of
the science which we have to study are more numerous
and complex than those of any other science hitherto
developed. Its external relations, on the one hand to
dynamics, and on the other to heat, light, chemical
action, and the constitution of bodies, scem to indicate
the special importance of electrical scicnce as an aid
to the interpretation of nature.

It appears to me, therefore, that the study of elec-
tromagnetism in all its extent has now become of the
first importance as a means of promoting the progress
of science.

The mathematical laws of the different classes of
phenomena have been to a great extent satisfactorily
made out.

The connexions between the different classes of phe-
nomena have also becen investigated, and the proba-
bility of the rigorous exactness of the experimental
laws has been greatly strengthened by a more extended
knowledge of their relations to each other.

Finally, some progress has been made in the re-
duction of electromagnetism to a dynamical science,
by shewing that no electromagnetic phenomenon is
contradictory to the supposition that it depends on
purely dynamical action.

What has been hitherto done, however, has by no
means exhausted the field of electrical research. It
has rather opened up that field, by pointing out sub-
jects of enquiry, and furnishing us with means of
investigation.

It is hardly necessary to cnlarge upon the beneficial
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results of magnetic research on navigation, and the
importance of a knowledge of the true direction of
the compass, and of the effect of the iron in a ship.
But the labours of those who have endeavoured to
render navigation more secure by means of magnetic
observations have at the same time greatly advanced
the progress of pure science.

Gauss, as a member of the German Magnetic Union,
brought his powerful intellect to bear on the theory
of magnetism, and on the methods of observing it,
and he not only added greatly to our knowledge of
the theory of attractions, but reconstructed the whole
of magnetic science as regards the instruments used,
the methods of observation, and the calculation of the
results, so that his memoirs on Terrestrial Magnetism
may be taken as models of Physical research by all
those who are engaged in the measurement of any
of the forces in nature,

The important applications of electromagnetism to
telegraphy have also reacted on pure scicnee by giving
a commercial value to accurate electrical measure-
ments, and by affording to electricians the use of
apparatus on a scale which greatly transcends that
of any ordinary laboratory. The consequences of this
demand for electrical knowledge, and of these experi-
mental opportunities for acquiring it, have been already
very great, both in stimulating the energies of ad-
vanced clectricians, and in diffusing among practical
men a degree of accurate knowledge which is likely
to conduce to the general scientific progress of the
whole engineering profession.
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There are several treatises in which electrical and
magnetic phenomena are described in a popular way.
These, however, are not what is wanted by those who
have been brought face to face with quantities to be
measured, and whose minds do not rest satisfied with
lecture-room experiments,

There is also a considerable mass of mathematical
memoirs which are of great importance in electrical
science, but they lie concealed in the bulky Trans-
actions of learned societies; they do not form a con-
nected system; they are of very unequal merit, and
they are for the most part beyond the comprehension
of any but professed mathematicians.

I have therefore thought that a treatise would be
useful which should have for its principal object to
take up the whole subject in a methodical manner,
and which should also indicate how each part of the
subject is brought within the reach of methods of
verification by actual measurement.

The general complexion of the treatise differs con-
siderably from that of several excellent -electrical
works, published, most of them, in Germany, and it
may appear that scant justice is done to the specu-
lations of several eminent electricians and mathema-
ticians. One reason of this is that before I began
the study of electricity I resolved to read no mathe-
matics on the subject till I had first read through
Faraday’s Experimental Researches on Electricity, 1
was aware that there was supposed to be a difference
between Faraday’s way of conceiving phenomena and
that of the mathematicians, so that neither he nor
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they were satisfied with each other’s language. 1 had
also the conviction that this discrepancy did not arise
from either party being wrong. I was first convinced
of this by Sir William Thomson ¥, to whose advice and
assistance, as well as to his published papers, T owe
most of what I have learned on the subject.

As I procecded with the study of Faraday, I per-
ceived that his method of conceiving the phenomena
was also a mathematical one, though not exhibited
in the conventional form of mathematical symbols, I
also found that these methods were capable of being
expressed in the ordinary mathematical forms, and
thus compared with those of the professed mathema-
ticians,

For instance, Faraday, in his mind’s cye, saw lines
of force traversing all space wherce the mathematicians
saw centres of force attracting at a distance : Faraday
saw a medium where they saw nothing but distance :
Faraday sought the seat of the phenomena in real
actions going on in the medium, they were satisfied
that they had found it in a power of action at a
distance impressed on the electric fluids.

When T had translated what I considered to be
Faraday’s ideas into a mathematical form, I found
that in general the results of the two methods coin-
cided, so that the same phenomena were accounted
for, and the samec laws of action deduced by both
methods, but that Faraday’s methods resembled those

* I take this opportunity of acknowledging my obligations to Sir
W. Thomson and to Professor Tait for many valuable suggestions made
during the printing of this work.
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in which we begin with the whole and arrive at the
parts by analysis, while the ordinary mathematical
methods were founded on the principle of heginning
with the parts and building up the whole by syn-
thesis.

I also found that several of the most fertile methods
of research discovered by the mathematicians could be
expressed much better in terms of ideas derived from
Faraday than in their original form.

The whole theory, for instance, of the potential, con-
sidered as a quantity which satisfies a certain partial
differential equation, belongs essentially to the method
which I have called that of Faraday. According to
the other method, the potential, if it is to be considered
at all, must be regarded as the result of a summa-
tion of the electrified particles divided each by its dis-
tance from a given point. Hence many of the mathe-
matical discoveries of Laplace, Poisson, Green and
Gauss find their proper place in this treatise, and their
appropriate expression in terms of conceptions mainly
derived from Haraday.

Great progress has been made in electrical science,
chiefly in Germany, by cultivators of the theory of
action at a distance. The valuable electrical measure-
ments of W. Weber are interpreted by him according
to this theory, and the electromagnetic speculation
which was originated by Gauss, and carried on by
Weber, Riemann, J. and C. Neumann, Lorenz, &c. is
founded on the theory of action at a distance, but
depending either directly on the relative velocity of the
particles, or on the gradual propagation of something,
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whether potential or force, from the one particle to
the other. The great success which these eminent
men have attained in the application of mathematics
to electrical phenomena gives, as is natural, addi-
tional weight to their theoretical speculations, so that
those who, as students of clectricity, turn to them as
the greatest authorities in mathematical electricity,
would probably imbibe, along with their mathematical
methods, their physical hypotheses.

These physical hypotheses, however, are entirely
alien from the way of looking at things which I
adopt, and onc object which I have in view is that
some of those who wish to study electricity may, by
reading this treatise, come to see that there is another
way of treating the subject, which is no less fitted to
explain the phenomena, and which, though in some
parts it may appear less definite, corresponds, as I
think, more faithfully with our actual knowledge, both
in what it affirms and in what it leaves undecided.

In a philosophical point of view, moreover, it is
exceedingly important that two methods should he
compared, both of which have succceded in explaining
the principal clectromagnetic phenomena, and both of
which have attempted to explain the propagation of
light as an electromagnetic phenomenon, and have
actually calculated its velocity, while at the same time
the fundamental conceptions of what actually takes
DPlace, as well as most of the secondary coneeptions of
the quantitics concerned, are radically different.

I have therefore taken the part of an advocate rather
than that of a judge, and have rather exemplified one
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method than attempted to give an impartial deseription
of both. I have no doubt that the method which I
have called the German one will also find its sup-
porters, and will be expounded with a skill worthy
of its ingenuity.

I have not attempted an exhaustive account of elec-
trical phenomena, experiments, and apparatus. The
student who desires to read all that is known on these
subjects will find great assistance from the 7Zvraité
d’Electricité of Professor A. de la Rive, and from several
German treatises, such as Wiedemann’s Galvanismus,
Riess’ Reibungselektricitiit, Beer’s Einleitung in die Elck-
irostatek, &e.

I have confined myself almost entirely to the ma-
thematical treatment of the subject, but I would
recommend the student, after he has learned, expcri-
mentally if possible, what are the phenomena to be
observed, to read -carefully Faradays Faperimental
Rescarches in Electricity. He will there find a strictly
contemporary historical account of some of the greatest
clectrical discoveries and investigations, carried on in
an order and succession which could hardly have becn
improved if the results had been known from the
first, and expressed in the language of a man who
devoted much of his attention to the methods of ac-
curately describing scientific operations and their re-
sults *.

It is of great advantage to the student of any
subject to read the original memoirs on that subject,
for science is always most completely assimilated when

¥ Life and Letters of Faralay, vol. i, p. 395.
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it is in the nascent state, and in the case of Faraday’s
Researches this is comparatively easy, as they are
published in a separate form, and may be read con-
secutively. If by anything 1 have here written I
may assist any student in understanding Faraday’s
modes of thought and expression, I shall regard it as
the accomplishment of one of my principal aims—to
communicate to others the same delight which I have
found myself in reading Faraday's Rescarches.

The description of the phenomena, and the ele-
mentary parts of the theory of each subject, will be
found in the earlier chapters of each of the four Parts
into which this treatise is divided. The student will
find in these chapters enough to give him an elementary
acquaintance with the whole science.

The remaining chapters of cach Part are occupied
with the higher parts of the theory, the processes of
numerical caleulation, and the instruments and methods
of experimental research.

The relations between electromagnetic phenomena
and those of radiation, the theory of molecular electric
currents, and the results of speculation on the nature
of action at a distance, are treated of in the last four
chapters of the second volume,

Feb. 1,1873.
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ERRATA. VOL. I

Page 26, 1. 3 from bottom, dele * As we have made no assumption’, &e,

T oo

down to 1. 7 of p. 27, ‘the expression may then e written’, and
substitute g follows :—

Let us now suppose that the curves for which ¢ is constant
form a series of closed curves, swrounding the point on the surfuce
for which a has its minimum value, a,, the last curve of the series,
for which a = a,, coinciding with the original closed curve s.

Let us also suppose that the curves for which 4 is constant form
a series of lines drawn from the point ut which a=q, to the
closed curve s, the first, 3, and the last, j3,, being identical.

Integrating (8) by parts, the first term with respect to a and
the second with respect to 3, the double integrals destroy each
other.  The line integral,

.

A dx
=) da
' Bo ( (l/j)a':uo ﬂ'
is zero, hecause the curve a = a, is reduced to a point at which
there is but one value of .\ and of a,
The two line integrals,
&, . dr aq  dr
~[M@ D)t ["x ) da
f,,o ( (la)ﬁ=ﬂl Jag ( tla)p.ﬁo !
destroy each other, hecenuse the point (a, 8,) is identical with the
point (a, 3;).
The expression (8) is therefore reduced to
B, dx
(X% aa (9)
Bo Ll/j a=ay
Since the curve a = a, is identical with the closed curve s, we
may write this expression

. 80, in equations (\‘:I), (1), (), (8), (17), (18), (19), (20), (21), (22), for

R vead N.

.82, 1. 3, for Rl read NI.

83, in equations (28), (29), (30), (31 CTy eed BV
. 83, juations 2 ) , (31), for T Teed T

»  in equation (29), nseré — before the second member.

. 105, 1. 2, for Q read 87Q.
- 108, equation (1), for p read .

” » (2), for o read p.
” » (3), for o read o
» ) (1), for o’ read .

113, L 4, for KR read .41_”1(13.

w L8, for KRR cose read 1 KRR cose.
4w

. 114, 1. 5, for 8, read S.
. 124, last line, for e, +e, read e,+e,
- 125, lines 3 and 4, tramspose within and without; L 16, for »

read V; and 1 18, for ¥V read ».

. 128, lines 11, 10, 8 from bottom, for da read d=.
p.

149, 1. 24, for cqupotentinl read cquipotential,



2 ERRATA. VOL. I
p- 159, 1.3, for F read f.
» L2 from bottow, for A read A,
p. 163, 1, 20, f())' Aiesi1 read /\;,0.4_1."
H . S \ jomr "i ., \ i~ !&
p. 164, cquation (34), for (—1) puii (7 read (~1)i~ WW
P 179, equation (7G), for i+1 read 27+ 1. -
2 A2 ] 2
p- 185, equation (24), for %—#:1 read %—-cg-l_-ge: 1.
D 186, 1 5 from bottom, for ‘The surfuce-density on the elliptic plate’
read The surface-density on either side of the clliptic plate.
p. 186, equation (30), for 27 read 4.
p. 188, cquation (38), for ©* read 27%
1196, 1. 27, for e..c read e ..e,.
197, equation (10) should be A Ee 3 ¢a’
). 197, equs d be = -
: : _ S r=a)
p- 204, 1. 15 from hottom, dele cither.
P 215, LA, for /2% read o/21.
. N E
P 234, equation (13), for 2L ¢cad 5
1 335, dele last 14 lines.
p- 336, L. 1, dele therefore,
5y L2, for “the potential at € to exceed that at D by P read a
current, C, from .\" to V.,
o L4y for <€ to D) will cause the potential at 4 to exceed that at
B by the same quantity £’ read X to ¥ will cause an equal
current € from 4o to B,
p- 351, 1.3, for B2+ R4 R2w? read R, w4 By vt Ryl
Crf, AV ad¥ AV,
» L& read + 2»//»/ (um_- +le?+ w -d—z) dadydz.
p- 355, last line, for 8 read S.
. . dh : ;i-’..i_‘e
p. 356, equation (12), for a | mead El_!
&
D- 365, in equations (12), (15), (16), for 4 read Ar.

P-
P

P

. 366, equation (3), for 22 eal Ly
- "

1 Ty
367, 1. 5, for 24/ S read 2I,S.
368, cyuation (14), for J, vead I
. I
397, 1. 1, for 75 read E,—&'.
. 404, at the end of Art. 350 inscrt as follows ;—

When ¥y, the resistance to be measured, a, the resistance of the
battery, and a, the resistauce of the galvanometer, are given, the
best values of the other resistances have been shewn by Mr. Oliver
Heaviside (772, May., Feb, 1873) to be

l‘:\/(t—a., [):N/ayz_j:_g, i}:,\/ayg..}y.



ELECGTRICITY AND MAGNETISM,

PRELIMINARY.
ON THE MEASUREMENT OF QUANTITIES.

1.] Lvery expression of a Quantity consists of two factors or
components. One of these is the name of a eertain known quan-
tity of the same kind as the quantity to be expressed, which is
tauken as a standard of reference. The other component is the
number of times the standard is to be taken in order to make up
the required quantity.  The standard quantity is technically called
the Unit, and the number is called the Numerical Value of the
quantity.

There must he as many different units as there are different
kinds of quantities to he measnred, but in all dynamical seiences
it is possible to define these units in terms of the threc funda-
mental units of Length, Time, and Mass. Thus the units of area
and of volume are defined respectively as the square and the cube
whose sides are the unit of length.

Sometimes, however, we find several units of the same kind
founded on independent considerations. Thus the gallon, or the
volume of ten pounds of water, is used as a unit of capacity as well
as the cubic foot. The gallon may he a convenient measure in
some cases, but it is not a systematic one, since its numerical re-
lation to the cubic foot is not a round integral number.

2.] In framing a mathematical system we suppose the funda-
mental units of length, time, and mass to be given, and deduce
all the derivative units from these by the simplest attainable de-
finitions,

The formulae at which we arrive must be such that a person

B



2 PRELIMINARY. (3.

of any nation, by substituting for the different symbhols the nu-
merical value of the quantities as measured by his own national
units, would arrive af a true result,

Hence, in all seientific studies it is of the greatest importance
to employ wnils belonging to a properly defined system, and {o
know the velations of these units to the fundamental units, so that
we may be able at once to transform our results from one system to
another,

This is most conveniently done by ascertaining the dimensions
of every unit in terms of the three fandumental units. When 0y
given unit varies as the zth power of one of these units, it is said
to be of # dimensions as regards that unit.

For instance, the scientific unit of volume is always the cube
whose side is the unit of length. If the unit of length varies,
the unit of volume will vary as its third power, and the unit of
volume is said to be of three dimensions with respect to the unit of
length,

A knowledge of the dimensions of units furnishes a test which
ought to he applied to the equations resulting from any lengthened
investigation. The dimensions of every term of such an equa-
tion, with respeet to each of the three fundamental units, must
be the same. If not, the equation is absurd, and contains some
error, as its interpretation wonld he different according to the arbi-
trary system of units which we adopt *.

The Three Fundamental Units.

3.1 (1) LZength. The standard of length for scientific purposes
in this country is one foot, which is the third part of the standard
yard preserved in the Exchequer Chambers.

In IFrance, and other countries which have adopted the metric
system, it is the métre. The métre is theoretically the ten mil-
lionth part of the length of a meridian of the carth measured
from the pole to the equator; but practically it is the length of
a standard preserved in Paris, which wns constructed by Borda
to correspond, when at the temperature of melting ice, with the
value of the preceding length as measured by Delambre. The métre
has not been altered to correspond with new and more accurate
measurements of the earth, but the arc of the meridian is estimated
in terms of the original métre.

* The theory of dimensions was first stated by Fourier, Théorie de Chaleur, § 160,
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5.] THE THREE FUNDAMENTAL UNITS, 3

In astronomy the mean distance of the earth from the sun is
sometimes taken as a unit of length.

In the present state of science the most universal standard of
length which we could assume would be the wave length in vacaum
of a particular kind of light, emitted hy some widely diffused sub-
stance such as sodium, which has well-defined lines in its spectrum.
Such a standard would be independent of any changes in the di-
mensions of the carth, and should be adopted by those who expeet
their writings to be more permanent than that body.

In treating of the dimensions of units we shall call the unit of
length [Z]. If 7 is the numerical value of a length, it is under-
stood to be expressed in terms of the concrete unit [Z], so that
the actual length would be fully expressed by ([L]).

4.1 (2) Zvme. 'The standard unit of time in all eivilized coun-
tries is deduced from the time of rofation of the earth about its
axis. The sidereal day, or the truc period of rotation of the earth,
can be ascertained with great exactness by the ordinary observa-
tions of astronomers; and the mean solar day can be deduced
from this by our knowledge of the length of the year.

The unit of time adopted in all physical researches is one second
of mean solar time.

In astronomy a year is sometimes used as a unit of time. A
more universal unit of time might be found by taking the periodie
time of vibration of the particular kind of light whose wave length
is the unit of length,

We shall call the concrete nnit of time [77, and the numerical
measure of time £,

5.] (3) Muss. The standard unit of mass is in this country the
avoirdwois pound preserved in the Exclequer Chambers. The
grain, which is often used as a unit, is defined to be the 7000th
part of this pound.

In the metrical system it is the gramme, which is theoretically
the mass of a cubic centimétre of distilled water at standard tem-
perature and pressure, but practically it is the thousandth part
of a standard kilogramme preserved in Paris.

The accuracy with which the masses of bodies can be com-
pared by weighing is far greater than that hitherto attained in
the measurement of lengths, so that all masses ought, if possible,
to be compared directly with the standard, and not deduced from
experiments on water.

In descriptive astronomy the mass of the sun or that of the

B2



4 PRELIMINARY. [5-

carth is sometimes taken as a unit, but in the dynamical theory
of astronomy the unit of mass is deduced from the units of time
and length, comhined with the fact of universal gravitation, The
astronomical unit of mass is that mass which attracts another
body placed at the unit of distance so as to produce in that hody
the unit of acecleration,

In framing a universal system of units we may either deduce
the unit of mass in this way from those of length and time
already defined, and this we can do to a rough approximation in
the present state of science; or, if we expeet * soon to be able to
determine the mass of a single molecule of a standard substance,
we may wait for this determination before fixing a universal
standard of mass.

We shall denote the concrete unit of mass by the symbol [A]
in treating of the dimensions of other units. The unit of mass
will be taken as onc of the three fundamental units.  When, as
in the IFrench system, a particular substance, water, is taken as
a standard of density, then the unit of mass is no longer inde-
pendent, but varies as the unit of volume, or as [7,5‘]‘

If, as in the astronomical system, the unit of mass is defined
with respect to its attractive power, the dimensions of [H] are
[ 14,

For the acecleration due to the attraction of a mass m at a

. . . m . :
distance 7 is by the Newtoniun Law —, Suppose this attraction

i

to act for a very smull time ¢ on a body originally at rest, and to
ause it to deseribe a space s, then by the formuly of Galileo,

NN m
8§ = i/t': .&—7.1 lz;

2

7”8 .
whence m = 2 R Since 7 and s are hoth lengths, and ¢ is a

N

time, this equation eannot be true unless the dimensions of i are
[£*7T~*]. The same can he shewn from any astronomical equa-
tion in which the mass of a hody appears in some but not in all
of the terms t.

* See Prof. J. Loschmidt, ¢ Zur Grisse der Lufunolecule,’ Academy of Vienna,
Oct. 12, 1865; G, .J. Stonoy on *The Internal Motions of Giases)! Phil. Mag., Aug.
1868 ; and Sir W. Thomson on * The Size of A toms,” Nature, March 31, 1870.

+ If afout and a second are taken s units, the astronomiceal unit of mass would
he about 932,000,000 pounds.



6.] DERIVED UNITS, 5

Derived Units,

6. ] The wnit of Velocity is that veloeily in which unit of length
15 described in unit of time.  TIts dimensions ave [£47"1],

If we adopt the units of length and time derived from the
vibrations of light, then the unit of velocity is the velocity of
light.

The unit of Aceecleration is that acceleration in which the velo-
city increasm by unity in unit of time. Iis dimensions are [Z7™%].

The unit of Density is the density of a substance which contains
unit of mass in unit of volume. Its dimensions are [I/Z7].

The unit of Momentum is the momentum of unit of mass moving
with unit of velocity, Tts dimensions are [ML21].

The unit of Force is the foree which produces unit of momentum
in unit of time. Its dimensions are [M L 1-2].

This js the absolute unit of force, and this definition of it is
implied in every equation in Dynamics. Nevertheless, in many
text books in which these equations are given, a different unit of
force is adopted, namely, the weight of the national unit of mass ;
and then, in order to satisfy the equations, the national unit of mass
s itself abandoned, and an artificial unit is adopted as the dynamical
unit, equal to the national unit divided by the numerical value of
the foree of gravity at the place. In this way both the unit of force
and the unit of mass are made to depend on the value of the
force of gravity, which varies from place to place, so that state-
ments involving these quantitics are not complete without a know-
ledge of the force of gravity in the places where these statements
were found to be true.

The aholition, for all scientific purposes, of this method of mea-
suring forces is mainly duc to the infroduction of a general system
of muking observations of magnetic foree in countries in which
the foree of gravity is different. All such forees are now measured
according 1o the strietly dynamical method deduced from our
delinitions, and the numerical results are the same in whatever
countiry the experiments are made.

The wnit of Work is the work done by the unit of force acting
through the unit of length measured in its own direction. Its
dimensions are [ ML 7-2].

The Energy of a system, being its capacity of performing work,
is measured by the work which the system is eapable of performing
by the expenditure of its whole cnergy.
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The definitions of other quantities, and of the units to which
they are referred, will he given when we require them.

In transforming the values of physical quantities determined in
terms of one unit, so as to express them in terms of any other unit
of the same kind, we have only to remember that every expres-
sion for the quantity consists of two factors, the unit and the nu-
merical part which expresses how often the unit is to be taken.
Hence the numerical part of the expression varies in versely as the
magnitude of the unit, that is, inversely as the various powers of
the fundamental units which are indicated by the dimensions of the
derived unit,

On Physical Continuity and Discontinuity.

7.1 A quantity is said to vary continuously when, if it passes
from one value to another, it assumes all the intermediate values,

We may obtain the coneeption of continuity from a consideration
of the continuons existence of n particle of matter in time and space.
Such a particle cannot pass from one position to another without
deseribing a continuous line in space, and the coordinates of its
position must be continuous funetions of {the time.

In the so-called ¢ equation of continuity,” as given in treatises
on Hydrodynamies, the fact expressed is that matier cannot appear
in or disappear from an element of volume without passing in or out
through the sides of that element.

A quantity is said to be a continuous function of its variables
when, if the variables alter continwously, the quantity itself alters
continuously.,

Thus, if « is a funetion of », and if, while 2 passes continuously
from @, to ay, u passes continuously from #, to #;, hut when 2
passes from 2y to &, # passes from u,’ to u,, 1" heing different from
#y, then # is said to have a discontinuity in its variation with
respect to @ for the value 2 = 2,, hecause it passes abruptly from #,
to )" while 2 passes continuously through 2,.

If we consider the differential cocfficient of # with respect to @ for
the value & = 2, as the limit of the fraction

z,—,
when &, and «, are both made to approach @, without limit, then,
if 2 and 2, are always on opposite sides of 2, the ultimate value of
the numerator will be u’—uy, and that of the denominator will
be zero. If uisa quantity physically continuous, the discontinuity
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can exist only with respect to the particular variable 2. We must
in this case admit that it has an infinite differential cocflicient
when @ = 2. If % is not physically continuous, it cannot be dif-
ferentiated at all.

It is possible in physical questions to get rid of the idea of
discontinuity without sensibly altering the conditions of the case.
If @, is a very little less than 2, and x, a very little greater than
wyy then uy will be very nearly equal to #, and #, to #,". We
may now suppose x to vary in any arbitrary but continuous manner
from #, to u, between the limits », and #,. In many physical
questions we may begin with a hypothesis of this kind, and then
investigate the result when the values of , and a, are made to
approach that of 2, and ultimately to reach it. The result will
in most cases be independent of the arbitrary manner in which we
have supposed « to vary hetween the limits,

Discontinuily of a Function of more than One Furiable.
A

8.] If we suppose the values of all the variables except  to be
constant, the discontinuity of the function will occur for particular
values of «, and these will be connected with the values of the
other variables by an cquation which we may write

b =¢(@yz &.) =0.
The discontinuity will occur when ¢p = 0. When ¢ is positive the
function will have the form £, (v, y, 2, &e.). When ¢ is negative
it will have the form F}(z, y, z, &c.). There need be no necessary
relation hetween the forms ] and £,

To express this discontinuity in a mathematical form, let one of
the variables, say a, be expressed as a function of ¢ and the other
variables, and let 7, and F, be expressed as functions of ¢, y, z, &c.
We may now cexpress the general form of the function by any
formula which is sensibly equal to Z}, when ¢ is positive, and to
Iy when ¢ is negative. Such a formula is the following—

po BB
14"

As long as # is a finite quantity, however great, F will be a
continuous function, but if we make 2 infinite 7 will be equal to
F, when ¢ is positive, and equal to #, when ¢ is negative.

Discontinuily of the Derivatives of a Continuons Function.

The first derivatives of a continuous function may be discon-

[OER SRR PR IS
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tinuous. Let the values of the variables for which the discon-
Linuity of the derivatives occurs be connccted by the equation
p=¢@,pz...)=0,

and let 7 and /F, be cxpressed in terms of ¢ and »—1 other
variables, say (#,2...).

Then, when ¢ is negative, /] is to be taken, and when ¢ 1is
positive %, is to be taken, and, since /' is itself continuous, when
¢ 15 zero, B, = F,.

Hence, when ¢ is zero, the derivatives I(i/—% and % may be

different, but the derivatives with respect to any of the other

, 1 F 1F,
variables, such as ((Iyl and {—=, must be the same. The discon-

dy
tinuity is therefore confined to the derivative with respect to ¢, all
the other derivatives being continuous,

Periodic and Multiple Fu.clions.

9] If 2 is a function of 2 such that its value is the same for
a, #+a, x+=za, and all values of 2 differing by «, z is called a
periodie function of #, and a is called its period.

If 2 is considered as a function of #, then, for a given value of
%, there must be an infinite series of values of z differing by
multiples of @, In this case & is called a multiple function of u,
and ¢ is called its cyclic constant. :

dr .
i has only a finite number of values

corresponding to a given value of «.

The differential coefficient

On the Relation of Physical Quantities to Directions in Space.

10.] In distinguishing the kinds of physical quantities, it is of
greal importance to know how they are related to the directions
of those eoordinate axes which we usually emplay in defining the
positions of things. The introduction of coordinate axes into geo-
metry by Des Cartes was one of the greatest steps in mathematical
progress, for it reduced the methods of geometry to ealeulations
performed on numerical quantitics. The position of a point is made
to depend on the length of three lines which are always drawn in
determinate directions, and the line joining two points is in like
manner considered as the resultant of three lines,

But for rany purposes in physical reasoning, as distinguished
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from caleulation, it is desirable to avoid explieitly introducing the
Cartesian coordinates, and to fix the mind at once on a point of
space instead of its three coordinates, and on the magnitude and
direction of a force instead of its three components. This mode
of contemplating geometrical and physical quantities is more prim-
itive and more natural than the other, although the ideas connected
with it did not receive their full development till Hamilton made
the next great step in dealing with space, by the invention of his
Calculus of Quaternions.

As the methods of Des Cartes are still the most familiar to
students of science, and as they ave really the most useful for
purposes of caleulation, we shall express all our results in the
Cartesian form. I am convineed, however, that the introduction
of the ideas, as distingunished from the operations and methods of
Quaternions, will be of great use to us in the study of all parts
of our subject, and especially in clectrodynamics, where we have to
deal with a number of physical quantitices, the relations of which
to cach other can be expressed far more simply by a few words of
Hamilton’s, than by the ordinary equations,

11.7 One of the most important features of Hamilton’s method is
the division of quantities into Scalars and Vectors.

A Scalar quantity is capable of being completely defined by a
single numerical specification.  Its numerical value does mot in
any way depend on the directions we assume for the coordinate
axes.

A Vector, or Directed quantity, requires for its definition three
numerical specifications, and these may most simply be understood
as having reference to the directions of the coordinate axes.

Scalar quantities do not involve direction. The volume of a
geometrical figure, the mass and the energy of a material body,
the hydrostatical pressure at a point in a fluid, and the potential
at a point in space, are examples of scalar quantities,

A vector quantity has direction as well as magnitude, and is
such that a reversal of its direction reverses its sign. The dis-
placement of a point, represented by a straight line drawn from
its original to its final position, may he taken as the typical
vector quantity, from which indeed the name of Vector is derived.

The velocity of a body, its momentum, the force acting on it,
an clectric current, the magnetization of a particle of iron, are
instances of veetor quantitics,

There are physical quantities of another kind which are related

e At 7 L



10 PRELIMINARY. [12.

to directions in space, but which are not vectors. Stresses and
strains in solid bodies are examples of these, and the properties
of bodies considered in the theory of clastieity and in the theory
of double refraction. Quantities of this clags require for their
definition #ine numerical specifications. They are expressed in the
language of Quaternions by linear and veetor functions of & vector,

The addition ol one veetor quantity to another of the same kind
1s performed aceording to the rule given in Statics for the com-
position of forces. In fact, the proof which Poisson gives of the
¢ parallelogram of forces” is applicable to the composition of any
quantitics such that a reversal of their sign is equivalent to turning
them end for end.

When we wish to denote a vector quantity by a single symho),
and to call attention to the fact that it js u vector, so that we must
consider its direction as well as its magnitude, we shall denote
it by a Gierman eapital letter, as 9, 8, &e,

In the caleulus of Quaternions, the position of a point in space
is defined by the vector drawn from a fixed point, called the origin,
to that point. If at that point of space we have to consider any
physieal quantity whose value depends on the position of the point,
that quantity is treated as a function of the vector drawn from
the origin. The function may be itself cither scalar or vector.
The density of a body, its temperature, its hydrostatic pressure,
the potential at a point, are examples of scalar funetions. The
resultant force at the point, the veloeity of a fluid at that point,
the velocity of rotation of an element of the fluid, and the couple
producing rotation, are examples of vector functions.

12.] Physical vector quantitics may be divided into two classes,
in one of which the quantity is defined with reference to a line,
while in the other the quantity is defined with reference to an
area.

For instance, the resultant of an attractive foree in any direction
may be measured by finding the work which it would do on a
body if the body were moved a short distance in that dircction
and dividing it by that shert distance. Here the attractive force
is defined with reference to a line.

On the other hand, the flux of heat in any direction at any
point of a solid body may be defined as the quantity of heat which
crosses a small area drawn perpendicular to that direction divided
by that area and by the time, Here the flux is defined with
reference to an area.
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There are certain cases in which a quantity may be measured
with reference to a line as well as with reference to an area.

Thus, in treating of the displacements of elastic solids, we may
direct our attention either to the original and the actual position
of a particle, in which case the displacement of the particle is
measured by the line drawn from the first position to the second,
or we may consider a small area fixed in space, and determine
what quantity of the solid passes across that area during the dis-
placement.

In the same way the velocity of a fluid may be investigated
either with respect to the actual velocity of the individual parti-
cles, or with respect to the quantity of the fluid which ows through

any fixed area.

But in these cases we require to know separately the density of

the body as well as the displacement ov velocity, in order to apply
the first method, and whenever we attempt to form a molecular
theory we have to use the second method.

In the casc of the flow of electricity we do not know anything
of its density or its velocity in the conductor, we only know the
value of what, on the fluid theory, wonld correspond to the product
of the density and the velocity. Hence in all sach cases we must
apply the more general method of measurement of the flux across
an area,

In clectrical science, clectromotive force and magnetic foree
belong to the first cluss, being defined with reference to lines.
When we wish to indicate this fact, we may refer to them as
Forces.

On the other hand, electric and magnetic induction, and clectrie
currents, belong to the sceond class, heing defined with reference
to areas. When we wish to indicate this fact, we shall refer to them
as Fluxes,

Lach of these forces may be considered as producing, or tending
to produce, its corresponding flux. Thus, electromotive force pro-
duces clectric currents in conductors, and tends to produce them
in dielectrics, It produces electric induction in diclectries, and pro-
bably in conductors also. In the same sense, magnetic force pro-
duces magnetic induction.

13.] In some cases the flux is simply proportional to the force
and in the same direction, but in other cases we can only affirm
that the dircetion and magnitude of the flux are functions of the

direction and magnitude of the force.
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The case in which the components of the flux are dincar functions
of those of the foree is discussed in the chapter on the Equations
of Conduction, Art. 296. There arc in gencral nine coefficients
which determine the relation between the foree and the flux. In
certain cases we have reason to believe that six of these coeflicients
form three pairs of equal quantities. In such cases the relation he-
tween the line of direction of the force and the normal plane of the
flus is of the same kind as that between a diameter of an ellipsoid
and its conjugate diametral plane. In Quaternion language, the
one veetor is said to be a linear and veetor function of the other, and
when there are three pairs of equal coeflicients the function is said
to be self-conjugate.

In the case of magnetic induction in iron, the flux, (the mag-
netization of the iron,) is not a linear function of the magnetizing
force. In all cases, however, the product of the force and the
flux resolved in its direction, gives a result of scientific import-
ance, and this is always a scalar quantity.

14.] There are two mathematical operations of frequent occur-
rence which are appropriate to these two classes of veetors, or
directed quantitics.

In the case of forces, we have to take the integral along a line
of the product of an clement of the line, and the resolved part of
the force along that clement. The result of this operation is
called the Line-integral of the force. It represents the work
done on a body carried along the line. In certain cases in which
the line-integral does not depend on the form of the line, but
only on the position of its extremities, the line-integral is called
the Potential,

In the casc of fluxes, we have to take the integral, over a surface,
of the flux through every clement of the surface. The result of
this operation is called the Surface-integral of the flux. It repre-
sents the quantity which passes through the surface.

There are certain surfaces across which there is no flux. If
two of these surfaces intersect, their line of interscction is a line
of flux. In those eases in which the flux is in the same dircetion
as the force, lines of this kind are often called Lines of Foree. It
would be more correet, however, to speak of them in electrostaties
and magnetics as Lines of Induetion, and in electrokinematics as
Lines of Flow, )

15.] There is another distinction between different kinds of
directed quantities, which, though very important in a physical
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point of view, is not so mecessary to he observed for the sake of
the mathematical methods. This is the distinction between longi-
tudinal and rotational properties.

The direction and magnitude of a quantity may depend upon
some action or effect which takes place entirely along a certain
line, or it may depend upon something of the nature of rota-
tion about that line as an axis, The laws of combination of
directed quantities are the same whether they are longitudinal or
rotational, so that there is no difference in the mathematical treat-
ment of the two clagses, but there may be physical circumstances
which indicate fo which class we must refer a particular pheno-
menon.  Thus, eleetrolysis consists of the transfer of certain sub-
stances along a line in one direction, and of certain other sub-
stances in the opposite direction, which is evidently a longitudinal
phenomenon, and there is no evidence of any rotational effect
about the direction of the force. Hence we infer that the electric
current which causcs or accompanies electrolysis is a longitudinal,
and not a rotational phenomenon.

On the other hand, the north and south poles of a magnet do
not differ as oxygen and hydrogen do, which appear at opposite
places during electrolysis, so that we have no evidence that mag-
netism is a longitudinal phenomenon, while the effect of magnetism
in rotating the plane of polarized light distinetly shews that mag-
netism is a rotational phenomenon.

5 L A S
M Ay -

On Line-integrals.

16.] The operation of integration of the resolved part of a vector
quantity along a line is important in physical science generally,
and should be clearly understood.

Let «, 4, = be the coordinates of a point 7 on a line whose
length, measured from a certain point 4, is 8. These coordinates
will be functions of a single variable s, )

Let £ be the value of the vector quantity at 7, and let the
tangent to the curve at 7 make with the direction of R the angle e,
then Zcose is the resolved part of R along the line, and the

integral s
g J/=/ R cos e ds
0

is cnlled the line-integral of 2 along the line «.
We may write this expression

, tovde L dy o de ]
L ——‘/0 (X7[-S; +1 (/8 +d78- (Z-&,
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where X, ¥, Zare the components of 2 parallel to z, g, z respect-
ively.

This quantity is, in general, different for different lines drawn
between o and P.  When, however, within a certain region, the
quantity o ‘

Xdet Ydy+Zd: =~ D¥,
that is, is an exact differential within that region, the value of Z
becomes L = ¥ —¥,,
and is the same for any two forms of the path between 4 and P,
provided the one form can be changed into the other by con-
tinuous motion without passing out of this region.

On Polentials,

The quantity ¥ is a scalar function of the position of the point,
and is thercfore independent of the directions of reference. It is
called the Potential Function, and the vector quantity whose com-
ponents are X, ¥, Z is said to have a potential ¥, if

. d¥ . A Y . AY
A:——(—[;; 1=—({7.’/', J:-—(—JE)-

When a potential function exists, surfaces for which the po-
tential is constant are called Equipotential surfaces. The direction
of 2 at any point of such a surface coincides with the normal to
A
o

The method of considering the components of a vector as the
first derivatives of a certain function of the coordinates with re-
speet to these coordinates was invented by Laplace* in his treat-
ment of the theory of attractions. The name of Potential was first
given to this function by Green+, who made it the basis of his
treatment of electricity. Green’s essay was neglected by mathe-
maticians till 1846, and before that time most of its important
theorems had been rediscovered by Gauss, Chasles, Sturm, and
Thomson .

In the theory of gravitation the potential is taken with the
opposite sign to that which is here used, and the resultant force
in any direction is then measured by the rate of increase of the

the surface, and if 2 be a normal at the point P, then 2 = —

* Mdée, Céleste, liv. iii.

T Essay on the Application of Mathematical Analysis to the Theories of Electricity
and Magnetism, Nottingham, 1828, Reprinted in Crellcs Journal, and in Mr. Ferrer's
edition of Green's Works.

1 Thomson and Tait, Natural Pbilosopby, § 483,
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potential function in that direction. In electrical and magnetic
investigations the potential is defined so that the resultant force
in any direction is measured by the decrease of the potential in
that direction. This method of using the expression makes it
correspond in sign with potential energy, which always decreases
when the bodies are moved in the direction of the forces acting
on them.

17.] The geometrical nature of the relation between the poten-
tial and the vector thus derived from it receives great light from
Hamilton’s discovery of the form of the operator by which the vector
1s derived from the potential.

The resolved part of the vector in any direction is, as we have
seen, the first derivative of the potential with respect to a co-
ordinate drawn in that direction, the sign heing reversed.

Now if i, j, £ are three unit vectors at right angles to each
other, and if X, ¥, Z are the components of the vector §§ resolved
parallel to these vectors, then

F=iX+Y+12; (1)
and by what we have said above, if ¥ is the potential,

LAY Ay dY
=g+ +h ) @)
If we now write V for the operator,
. d d d
. } e 3
o +J(Zy +i dz’ )
F ==V, (‘1)

The symbol of operation ¥V may be interpreted as directing us
to measure, in each of three rectangular directions, the rate of
inerease of W, and then, considering the quantities thus found as
vectors, to compound them into one. This is what we are directed
10 do by the expression (3). DBut we may also consider it as directing
us first to find out in what direction ¥ increases fastest, and then
to lay off in that direction a vector representing this rate of
increase.

M. Lamé, in his Zyaité des Fonctions Inverses, uses the term
Differential Parameter to express the magnitude of this greatest
rate of increase, but neither the term itself, nor the mode in which
Lamé uses it, indicates that the quantity referred to has direction
as well as magnitude. On those rare occastons in which I shall have
to refer to this relation as a purely geometrical one, I shall call the
veetor & the Slope of the scalar function ¥, using the word Slope
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to indicate the direction, as well as the magnitude, of the most

rapid decrease of .
18.] There arc cases, however, in which the conditions

iz dY dX dz aYy dX
e — =0, - —— =0, and -, —~-—=0,
dy dz dz dz dr dy

which are those of Xde+ Ydy + Zdz heing a complete differential,
are fulfilled throughout a certain region of space, and yet the line-
integral from A to P may be different for two lines, each of
which lics wholly within that region. This may be the case if
the region is in the form of a ring, and if the two lines from A
to 2 pass through opposite segments of the ring. In this case,
the one path cannot be transformed into the other by continuous
motion without passing out of the region.

We are here led to considerations belonging to the Geometry
of Pusition, a subject which, though its importance was pointed
out by Leibnitz and illustrated by Guuss, has heen little studied.
The most complete treatment of this subjeet has been given by
J. B. Listing *.

Let there be p points in space, and let £ lines of any form be
drawn joining these points so that no two lines intersect each
other, and no point is left isolated. We shall call a figure com-
posed of lines in this way a Diagram. Of these lincs, p—1 are
sufficient to join the p points so as to form a connected system.
Lvery new line completes a loop or closed path, or, as we shall
call it, a Cycle. The number of independent eycles in the diagram
is therefore x = d— p+ 1.

Any closed path drawn along the lines of the diagram is com-
posed of these independent cycles, each being taken any number of
times and in either direction.

The existence of cycles is called Cyclosis, and the number of
cycles in a diagram is called its Cyclomatic number,

Cyclosis in Supfaces and Regions.

Surfaces are either complete or bounded.  Complete surfaces are
either infinite or closed. Bounded surfaces are limited by one or
more closed lines, which may in the limiting cases become finite
lines or points.

A finite region of space is bounded by one or more closed
surfaces, Of these one is the external surface, the others are

* Der Census Raiimlicher Complexe, Gitt. Abh,, Bd. x. 8. 97 (1861).
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included in it and exclude each other, and are called internal
surfiaces.

If the region has one hounding surface, we may suppose that
surface to contract inwards without breaking its continuity or
culting itself. If the region is onc of simple continuity, such as
a sphere, this process may be continued till it is reduced to a
point; but if the region is like a ring, the result will be a closed
curve; and if the region has multiple connexions, the result will
be a diagram of lines, and the cyclomatic number of the diagram
will be that of the region. The space outside the region has the
same cyclomatic number as the region itself. Hence, if the region
is bounded by internal as well as external surfaces, its cyclomatic
number is the sum of those due to all the surfaces.

When a region encloses within itself other regions, it is called a
Periphractic region.

The number of internal bounding surfaces of a region is called
its periphractic number. A eclosed swrface is also periphractic, its
number being unity.

The cyclomatic number of a closed surface is twice that of the
region which it bounds. To find the cyclomatic number of a
bounded surface, suppose all the boundaries to contract inwards,
without breaking continuity, till they meet. The surface will then
Le reduced to a point in the case of an acyclic surface, or to a linear
diagram in the case of cyclic surfaces. The cyclomatic number of
the diagram is that of the surface.

19.] Turorex L. If throughout any acyelic region
Xde+Ydy+Zd: =—-D¥,
the value of the line-integral from a point A lo « point P taken
along any palk within the region will be the same.

‘We shall first shew that the line-integral taken round any closed
path within the region is zero.

Suppose the equipotential surfaces drawn. They are all either
closed surfaces or are bounded entirely by the surface of the region,
so that a closed line within the region, if it cuts any of the sur-
faces at one part of its path, must cut the same surface in the
opposite direction at some other part of its path, and the corre-
sponding portions of the line-integral being equal and opposite,
the total value is zero.

Hence if 4QP and 4Q'P are two paths from 4 to P, the line-
integral for 4Q’P is the sum of that for 4Q P and the closed path

VOL. I. C
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AQ'PQ.L. But the line-integral of the closed path is zero, there-
fore those of the two paths are equal.

Hence if the potential is given at any one point of such a
region, that at any other point is determinate,

R0.] Tuwores 1L In @ eyelic region in which the equation
Xdoet Ydy4+Zd: = — Dy
w8 everywhere fulfilled, the line-integral from A to P, along a
line drawn within the region, will wol in general be determinate
unless the channel of communication hetween A und P e specified.

Let A be the eyclomatic number of the region, then A sections
of the region may be made by surfaces which we may call Dia-
phragms, so as to close up K of the channels of communication,
and reduce the region to an acyclic condition without destroying
its continuity.

The line-integral from 4 to any point P taken along a line
which does not cut any of these diaphragms will be, by the last
theorem, determinate in value.

Now let 4 and £ be taken indefinitely near to each other, but
on opposite sides of a diaphragm, and let A be the line-integral
from 4 to P,

Let A" and /" he two other points on opposite sides of the same
diaplragm and indefinitely near to each other, and let £ be the
line-integral from 4" to 7. Then A’= K.

For if we draw .4 and PP, nearly coincident, but on opposite
sides of the diaphragm, the line-integrals along these lines will be
equal.  Suppose each equal to /, then the line-integral of 4'F is
equal 1o that of L' 4 4P 4 PP = ~L+K+1 = K = that of 4P,

Hence the line-integral round a closed curve which passes through
one diaphragm of the system in a given direction is a constant
quantity AL This quantity is called the Cyclic constant corre-
sponding to the given cycle,

Let any closed curve be drawn within the region, and let it cut
the diaphragm of the first cycle » times in the positive direction
md 2” times in the negative direction, and let »—p'=n;. Then
the line-integral of the closed curve will be n, K.

Similarly the line-integral of any closed curve will be

Ky 4w, Ky oy Ky
where #x repvesents ihe excess of the number of positive passages
of the curve through the diaphragm of the cycle K over the
number of negative passages,
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If two curves are such that one of them may be transfermed
into the other by continuous motion without at any time passing
through any part of space for which the condition of having a
potential is not fulfilled, these two curves are called Reconcileable
curves. Curves for which this transformation cannot he effected
are called Irreconcileable curves *,

The condition that Xde+ Ydy+ Zd: is a complete differential
of some function ¥ for all points within a certain region, occurs in
several physical investigations in which the directed quantity and
the potential have different physical interpretations.

In purc kinematics we may suppose X, I, 7 to be the com-
ponents of the displacement of a point of a continuous body whose
original coordinates are ,y, z, then the condition expresses that
these displacements constitute a non-rofational strain +.

If X, ¥, Z represent the components of the velocity of a fluid at
the point , 7, z, then the condition expresses that the motion of the
fluid is irrotational.

If X, Y, Z represent the components of the foree at the point
@, y, =, then the condition expresses that the work done on a
particle passing from one point to another is the difference of the
potentials at these points, and the value of this difference is the
same for all reconcileable paths between the two points.

On Surfuce-Integrals.
21.] Let 48 be the clement of a surface, and e the angle which
a normal to the surface drawn towards the positive side of the
surface makes with the direction of the vector quantity 2, then

f I cos €d§ is called the suifuce-integral of I over the supfuce S.

Taeorey IIX. The supfuce-integral of the fluw through a closed
surfuce may be expressed as the volume-inlegral of its convergence
taken within the surfuce. (See Art. 25.)

Let X, Y, Z be the components of £, and let /, m, n be the

direction-cosines of the normal to § measured outwards. Then the
surface-integral of 2 over § is

fchose(ZS =f/deS+f/YerS—{-f/anS
:ffX(lydz+ff1'{Zz(I:v+ [dex(ly; (1)

* See Sir W. Thomson *On Vortex Motion,' Trans. R. S. Edin., 1869.
+ See Thomson and Tuit's Natural Philvsophy, § 190 (i).

C2
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the values of X, ¥, Z being those at a point in the surfuce, and
the integrations being extended over the whole surface.

If the surface is a closed one, then, when 7 and z are given,
the coordinate 2 must have an even number of values, since a line
parallel to # must enter and leave the enclosed space an equal
number of times provided it meets the surface at all.

Let a point travelling from @ =—o to 2 =4 first enter
the space when @ = 2, then leave it when @ = #,, and so on;
and let the values of X at these points be X7, X,, &e., then

f /X@d:: ff {(Vy= 1) + (X — X)) + &e. + (X, — X, ) dydz. (2)

If X is a quantity which is continuous, and has no infinite values
between 2 and ., then
. . 2 d X
XX = [

Jo da de; (3)
where the integration is extended from the first to the second
intersection, that is, along the first segment of 2 which is within
the closed surface, Taking into account all the segments which lie

within the closed surface, we find

f / Xdyd: = f f f f(zl% diedy dz, ()

the double integration being confined to the closed surface, but
the triple integration being extended to the whole enclosed space.
Hence, if X, ¥, Z are continuous and finite within a closed surface
8, the total surface-integral of R over that surface will be

dX dY dZ
/fﬁcosulS =.[./-f(?/,}:_ + o + (7;) div dy dz, (5)

the triple integration being extended over the whole space within S.
Let us next suppose that X, ¥, Z are not continuous within the
closed surface, but that at a certain surface F(x, y,2) =0 the
values of X, ¥, Z alter abruptly from X ¥, Z on the negative side
of the surface to X, 17, Z’ on the positive side.
If this discontinuity occurs, say, between 2y and z,, the value
of X, — X, will be

"2 d X ,
j ’(—];(/.H(X —X), (6)
B2

where in the expression under the integral sign only the finite
values of the derivative of X are to be considered.

In this case therefore the total surface-integral of R over the
closed surface will he expressed by

gilév::‘..l’b. FOPE R ' e
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ff]wosalS _fff(((’;: (Zl} ((7/7)(&(7‘1/(1:+ /f X'—X)(Iy(&
+/f(l’ Y)(/~(IU+//(Z’ Dydudy; (1)

or, if ", w/, n’ ave the direction-cosines of the normal to the surface
of discontinuity, and 75" an element of that surface,

f]l cos € dS _fff(f]A (]Y (]/ - )dedy d=

+ff{l’(X’—-X)+m’(1"'—~ PY4n'(Z'—-7)}dS, (8)
where the integration of the last term is to he extended over the
surface of discontinuity.

If at every point where X, ¥, Z are continuous

dX dY dZ
Y taE=% ®
and at every surface where they are discontinuous
X 4w Y +0 2 =V X+m' Y+ 2, (10)
then the surface-integral over every closed surface is zero, and the
distribution of the vector quantity is said to be Solenoidal.

We shall refer to equation (9) as the General solenoidal con-
dition, and to equation (10) as the Superficial solenoidal condition.

22.] Let us now consider the case in which at every point
within the surface § the equation

dX dY iz

wtayta
is fulfilled. We have as a consequence of this the surface-integral
over the closed surface equal to zero.

Now let the closed surface S consist of three parts §;, &, and
S;. Let 8, be a surface of any form bounded by a closed line Z;.
Let S, be formed by drawing lines from every point of Z, always
coinciding with the direction of 2. IfZ m, »n arc the direction-
cosines of the normal at any point of the surface §,, we have

Reose =X+ Ym4-Zn =0, (12)
Hence this part of the surface contributes nothing towards the
value of the surface-integral.

Let 8, be another surface of any form bounded by the closed
curve [, in which it meets the surface §,

Let Q,, @,, @, be the surface-integrals of the surfaces S}, Sy, S,
and let @ be the surface-integral of the closed surface §. Then

Q=Q+Q+@=0; (13)

=0 (11)
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and we know that Q,=0; (14)
therefore Q,=—0Q,; (15)
or, in other words, the surfiuce-integral over the surface S, is equal
and opposite to that over S, whatever be the form and position
of §,, provided that the intermediate surface S, is one for which £
is always tangential.

If we suppose /, a closed curve of small area, S, will be a
tubular surface having the property that the surface-integral over
every complete section of the tube is the same.

Since the whole space can be divided into tubes of this kind

provided dX Jd¥Y 47

gyt = (16)

a distribution of a vector quantity consistent with this equation is
called a Solenoidal Distribution.

On Tubes and Lines of Flow,

If the space is so divided into tubes that the surface-integral
for every tube is unity, the tubes are called Unit tubes, and the
surfuce-integral over any finite surface S hounded by a closed
curve L is equal to the numéber of such tubes which pass through
§ in the positive direction, or, what is the same thmg the number
which pass through the closed curve L.

ITence the surface-integral of § depends only on the form of
its boundary L, and not on the form of the surface within its
Loundary.

On Periphractic Regions.

If, throughout the whole region hounded externally by the single

closed surface §;, the solenoidal condition

dX ay az

aw Tt
is fulfilled, then the surface-integral taken over any closed surface
drawn within this region will be zero, and the surface-integral
taken over a hounded surface within the region will depend only
on the form of the closed curve which forms its houndary.,

Tt is not, however, generally true that the same results follow
if the region within which the solenoidal condition is fulfilled is
bounded otherwise than by a single surface.

For if it is bounded by more than one continuous surface, one of
these is the external surface and the others are internal surfaces,
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and the region § is a periphractic region, having within it other
regions which it completely encloses.

If within any of these enclosed regious, §;, the solenoidal con-
dition is not fulfilled, let

Q= ffﬂ cose S,

he the surface-integral for the surface enclosing this region, and
let Q,, @, &ec. be the corresponding quantities for the other en-
closed regions.

Then, if a closed surfuce §” is drawn within the region §, the
value of its surface-integral will be zero only when this surface
§” does not include any of the enclosed regions S, §,, &e. If it
includes any of these, the surface-integral is the sum of the surface-
integrals of the different enclosed regions which lie within it.

For the same reason, the surface-integral taken over a surface
bounded by a closed curve is the same for such surfaces only bounded
by the closed curve as are reconcileable with the given surface by
continuous motion of the surface within the region S,

When we have to deal with a periphractic region, the first thing
{o be done is to reduce it 6 an aperiphractic region by drawing
lines joining the different hounding surfaces. Each of these lines,
provided it joins surfaces which were not already in continuous
connexion, reduces the periphractic number by unity, so that the
whole number of lines to be drawn to remove the periphraxy is
equal to the periphractic number, or the number of internal sur-
faces. When these lines have been drawn we may assert that if
the solenoidal condition is fulfilled in the region S, any closed surface
drawn entirely within §, and not cutting any of the lines, has its
surface-integral zero.

In drawing these lines we must remember that any line joining
surfaces which are already connected does not diminish the peri-
phraxy, but introduces eyclosis.

The most familiar example of a periphractic region within which
the solenoidal condition is fulfilled is the region surrounding a mass
attracting or repelling inversely as the square of the distance.

In this case we have

X= 'm,;%, Y= -m;’é—: 7= m%;
where m is the mass supposed to be at the origin of coordinates.
At any point where r is finite
dX dY d7

wrptE =0
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but at the origin these quantities become infinite.  For any closed
surface not including the origin, the surface-integral is zero. If
a closed surface includes the origin, its surface-integral is 4 .

If, for any reason, we wish to treat the region round » as if it
were not periphractic, we must draw a line from » to an infinite
distance, and in taking surface-integrals we must remember to add
4mm whenever this line crosses from. the negative to the positive
side of the surface.

Onr Right-handed and Left-handed Relations in Space.

23.] In this treatise the motions of translation along any axis
and of rotation about that axis, will be assumed to be of the same
sign when their directions correspond to those of the translation
and rotation of an ordinary or right-handed serew *.

For instance, if the actual rotation of the earth from west to cast
is taken positive, the direction of the earth’s axis from south to
north will be taken positive, and if a man walks forward in the
positive direction, the positive rotation is in the order, head, right-
. hand, feet, left-hand.

If we pluce ourselves on the positive side of a surface, the positive
direction along its bounding curve will be opposite to the motion
of the hands of a watch with its face towards us.

This is the right-handed system which is adopted in Thomson
and Tait’s Natural Philosoply, § 243. The opposite, or left-handed
system, is adopted in Hamilton's and Tait's Quaternions. The
operation of passing from the one system to the other is called, by
Listing, Perversion.

The reflexion of an object in 2 mirror is a perverted image of the
object. .

When we use the Cartesian axes of g, ¥, %, we shall draw them

* The combined action of the muscles of the arm when we turn the upper side of
the right-hand outwards, and at the same time thrust the hand forwards, will
impress the right-handed screw motion on the memory more firmly than any verbal
definition, A cotmon corkserew may be used as o material symbol of the same
relation,

Professor W, H. Miller has suggested to me that as the tendrils of the vine are
right-handed serews and those of the hop left-handed, the two systems of relations in
space might be called those of the vine and the Lop respectively.

The wystem of the vine, which we adopt, is that of Linnweus, and of serew-makers
in all civilized countries except Japan. De Candollo was the first who called the
hop-tendril right-handed, and in this he is followed by Listing, and by most writers
on the rotatory polarization of light. Screws like the hop-tendril are made for the
couplings of railway-carriages, and for the tittings of wheels on the left side of ordinary
carringes, but they are always called left-handed screws by those who use them.
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so that the ordinary conventions about the cyclic order of the
symbols lead to a right-handed system of directions in space. Thus,
if 2 is drawn castward and y northward, z must be drawn upward.
The areas of surfaces will be taken positive when the order of
integration coincides with the eyclic order of the symbols. Thus,
the area of a closed curve in the plane of 7 may be written either

/wdy or -—-fydw;

{he order of integration being @, y in the first expression, and y, 2
in the second.

This relation between the two produets dedy and dydr may
be compared with that between the products of two perpendicular
vectors in the doctrine of Quaternions, the sign of which depends
on the order of multiplication, and with the reversal of the sign
of a determinant when the adjoining rows or columns are ex-
changed.

For similar reasons a volume-integral is to be taken positive when
the order of integration is in the cyclic order of the variables z, g, 2,
and negative when the cyclic order is reversed.

We now proceed to prove a theorem which is useful as esta-
Dlishing a connexion between the snrfacc-integral taken over a
finite surface and a line-integral taken round its boundary.

AT G, %
24.] Turonem IV. A line-integral ta c)z,xmzm(l a close}l,\gurw
may be expressed in terms of a suj (fgc-znte!()g‘(.,ﬁdm& ater «

surface bozm(lul by the curve. = LB Wil f

Let X, Y, Z be the components of a vecto '(' uantlty ‘21 whopé line-
integral is to be taken round a closed curve s.

Let § be any continuous finite surface bounded entlrely by the
closed curve s, and let & 9, ¢ be the components of another vector
quantity 9, related to X, ¥, Z by the equations

- dZ tl{ _ (_Z{X_’ (Zg ¢= aY dX .
t=7 - " w Teogy O

Then the surface-integral of B taken over the surface § is equal to
the line-integral of 9 taken round the curve s. It is manifest that
£, n, ¢ fulfil of themsclves the solenoidal condition

d§ (Zn af _

de dy tn =

Let £, m, n be the direction-cosines of the normal {o an element
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of the surface d§, reckoned in the positive direction. Then the
value of the surface-integral of 8 may be written

f (lE+my+nl)dS. (2)

In order to form a definite idea of the meaning of the element
.d8, we shall suppose that the values of the coordinates a, 7, z for
every point of the surface are given as functions of two inde-
pendent variables @ and 8. If 3 is constant and a varies, the point
(2, 7, 2) will describe a enrve on the surface, and if a series of values
is given to B, a series of such curves will be traced, all lying on
the surface 8. In the same way, by giving a series of constant

values to a, a second scries of curves may be traced, cutting the
first series, and dividing the whole surface into elementary portions,
any one of which may be taken as the element 4.8.

The projection of this element on the plane of g, z is, by the

ordinary formula,

1d8 = ((?z/ dz dy d:

a a3~ dp da) B do- (3)
The expressions for mdS and 2d§ are obtained from this by sub-
stituting 2, 7, £ in eyclic order.

The surface-integral which we have to find is

f/(lf-}- my+u{)ds; €))
or, substituting the values of &, », ¢in terms of X, 1, Z,
dX (1 X Ay dY Az @ dZ
f/( ne = 7 71%—-,;/?-{»[{@ n = das. (5)
The part of this which dcponds on X may be written
//g(il ((1" _’/j{ _ i]: (/.-L-) ((é'(dx dy dz dy
| d: \dadB  dBdo!™ dy \dadB ™ B da
d. \ dr dr

adding and subtracting - s da B’ this becomes

)} dBda; (6)

j / (dz ((].X da (]_} dy dX d:
143 \dz (la dy da * d: (la)
i (rl.\’ dy dX d, Y dX d:=\}

it agt @ (zB) dBda; (1)

T da

[ AdX de  dX dy
[ 15 d§ da) B e ®
As we have made no assumption as to the form of the functions
a and B, we may assume that a is a function of X, or, in other
words, that the curves for which « is constant are those for which
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. . 9.4 . :
X is constant. In this case 53 = 0, and the expression becomes

'8
by integration with respect to a,
dX de . dx

where the integration is now to be performed round the closed
curve. Since all the quantities are now expressed in terms of one
variable 8, we may make s, the length of the hounding curve, the
independent variable, and the expression may then be written

Ldr
f;‘ ;-[; (/8, (] 0)
where the integration is to be performed round the curve s. We

may treat in the same way the parts of the surface-integral which
depend upon ¥ and Z, so that we get finally,

. L dr Ly o dz )
/f(lf-{-mn-{-nf)(lé _f(‘x PR +J;E)(Zs s (1)

where the first integral is extended over the surface S, and the
second round the bounding curve s*.

On the effect of the operator V on a veclor JSunction,

25.] We have seen that the operation denoted by ¥ is that by
which a vector quantity is deduced from its potential. The same
operation, however, when applied to a vector function, produces
results which enter into the two theorems we have just proved
(ITL and TV). The extension of this operator to vector displacements,
and most of its further development, is duce to Professor Tait +.

Let « be a vector function of p, the vector of a variable point.
Let us suppose, as usual, that

p=zta+jy+ke
and c=1X+5V+%Z;
where X, ¥, Z are the components of o in the directions of the
axes.
We have to perform on o the operation
.4 .d d
Performing this operation, and remembering the rules for the

« This theorem was given by Professor Stokes. Smith's Prize Ezamination, 1854,
question 8. It is proved in Thomson and Tait's Natural Philosophy, § 190 (j).

+ See Proc. . 8. Edin., April 28, 1862, * On Green’s and other allied Theorems,’
Trans, R. 8. Edin, 1869-70, a very valuable paper; and * On some Quaternion
Integrals, Proc. R. §. Edin., 1870-71.
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multiplication of 4, j, £, we find that Vo consists of two parts,
one scalar and the other vector.
The scalar part is

Vo= — ((l,_\ dY dZ

T i + -21:—), sce Theorem 111,
and the vector part is
LAz dY, AN dZ dY dAX
Vee=i(y =g+ (G =) 4G - 3

If the relation hetween X, ¥, Z and §, #, ¢ is that given by

equation (1) of the last theorem, we may write
FVo=if+jn+k¢ ScecTheorem IV,

It appears therefore that the functions of X, ¥, Z which oceur
in the two theorems are hoth obtained by the operation ¥ on the
vector whose components are X, ¥, Z The theorems themselves
may be written

f[/.SVo(ls =/f:5'.trUud.S, (I11)
and fSo’dp =f_/.S.VaUpd3; (IV)

where ds is an element. of a volume, ds of a surface, 7p of a curve,
and Uv a unit-vector in the direction of the normal.
To understand the meaning of these functions of a vector, let us
suppose that ¢, is the value of o at a point P, and let us examine
the value of o¢—o, in the neighbourhood of P.
1 If we draw a closed surface round P, then, if the
\ / surface-integral of ¢ over this surface is directed
inwards, §V ¢ will be positive, and the vector
» o—a, near the point P will be on the whole
il AN directed towards P, as in the figure (1).
f I propose therefore to call the scalar part of
Fig. 1. V a the convergence of o at the point P.
To interpret the vector part of Vo, let us
suppose ourselves to be looking in the direction of the vector
whose components are £, 4, ¢, and let us examine
- the vector o—o, near the point 2. It will appear
l s ‘ as in the figure (2), this vector being arranged on
the whole tangentially in the direction opposite to
the hands of a watch.
I propose (with great diffidence) to call the vector
part of Vo the curl, or the version of o at the point 2.

—

Fig. 2,
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At Fig. 3 we have an illustration of curl combined with con-
vergence.

Let us now consider the meaning of the equation
VVeo=0. \ /
This implies that Vo is a scalar, or that the vector ' \
o is the slope of some scalar function ¥. These /

applications of the operator ¥ are due to Professor
Tait*. A more complete development of the theory
is given in his paper *On Green’s and other allied Theorems +,’
to which I refer the reader for the purely Quaternion investigation
of the properties of the operator V.

26.] One of the most remarkable properties of the operator V is
that when repeated it becomes
d? d* az
G T IRt )
an operator occurring in all parts of Physics, which we may refer to
as Laplace’s Operator.

This operator is itself essentially scalar. When it acts on a
sealar function the result is scalar, when it acts on a vector function
the result is a vector.

If, with any point P as centre, we draw a small sphere whose
radius is 7, then if ¢, is the value of ¢ at the centre, and g the
mean value of ¢ for all points within the sphere,

go—7 = 157° V' ¢
so that the value at the centre cxceeds or falls short of the mean
value according as V2¢ is positive or negative.

I propose therefore to call vig the concentration of ¢ at the
point P, because it indicates the excess of the value of g at that
point over its mean value in the neighbourhood of the point.

If ¢ is a scalar function, the method of finding its mean value is
well known. If it is a vector function, we must find its mean
value by the rules for integrating vector functions. The result
of course is a vector,

Fig. 3.

Vi =—(

* Proceelings R. S. Edin., 1862. + Trans. R. S. Edin., 1869-70.
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PART I

ELECTROSTATICS.

CHAPTER I

DESCRIPTION OF PHENOMENA.

EBlectrification by Friction.
27.] ExperiveNT I*. Let a piece of glass and a piece of resin,
neither of which exhibits any electrical properties, be rubbed to-
gether and left with the rubbed surfaces in contact. They will

still exhibit no electrical properties. Let them be separated. They -

will now attract each other.
If a second picce of glass be rubbed with a second piece of
resin, and if the pieces be then separated and suspended in the

neighbourhood of the former picces of glass and resin, it may be
observed—

(1) That the two pieces of glass repel each other.
(2) That each piece of glass attracts each piece of resin.
(3) That the two pieces of resin repel each other.

These phenomena of attraction and repulsion are called Elec-
trical phenomena, and the bodies which exhibit them are said to
be electrified, or to be charged with electricity.

Bodies may be electrified in many other ways, as well as by
friction. .

The electrical properties of the two picces of glass are similar
to each other but opposite to those of the two pieces of resin,
the glass attracts what the resin repels and repels what the resin
attracts.

* See Sir W. Thomson ‘On the Mathematical ‘Theory of Electricity, Cambridge
and Dublin Mathematical Journal. March, 1848.
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If a body electrified in any manner whatever behaves as the
glass does, that is, if it repels the glass and attracts the resin, the
body is suid to be vitreously electrified, and if it attracts the glass
and repels the resin it is said to be resinously electrified. All
clectrified bodies are found to be either vitreously or resinously
electrified.

It is the established practice of men of science to call the vitreous
clectrification positive, and the resinous clectrification negative.
The exactly opposite propertics of the two kinds of electrification

Justify us in indicating them by opposite signs, but the applica-

tion of the positive sign to one rather than to the other kind must
be considered as a matter of arbitrary convention, just as it is a
matter of convention in mathematical diagrams to reckon positive
distances towards the right hand.

No force, either of attraction or of repulsion, can be observed
between an electrified body and a body not electrified. When, in
any case, bodies not previously electrified are observed to be acted
on by an electrified body, it is because they have become electrified
by induction.

Lilectrification by Induction.

28.] LxeEriMENT II%. Let a hollow vessel of metal be hung
up by white silk threads, and let a similar thread
be attached to the lid of the vessel so that the vessel
may be opened or closed without touching it.

Let the pieces of glass and resin be similarly sus-
pended and electrified as before.

Let the vessel be originally unclectrified, then if
an clectrified piece of glass is hung up within it by
its thread without touching the vessel, and the lid
closed, the outside of the vessel will be found to
be vitreously clectrified, and it may be shewn that
the electrification outside of the vessel is exactly the
same in whatever part of the interior space the glass
is suspended.

If the glass is now taken out of the vessel without touching it,
the electrification of the glass will be the same as before it was
put in, and that of the vessel will have disappeared.

This electrification of the vessel, which depends on the glass

Fig. 4.

* This, and several experiments which follow, are due to Faraday, ‘ On Static
Electrical Inductive Action,” Phil. Mag., 1843, or Exp. Res., vol. ii. p. 279.
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being within it, and which vanishes when the glass is removed, is
called Electrification by induction.

Similar effects would be produced if the glass were suspended
near the vessel on the outside, but in that case we should find
an electrification vitreous in one part of the outside of the vessel
and resinous in another. When the glass is inside the vessel
the whole of the outside is vitreously and the whole of the inside
resinously electrified.

Electrification by Conduction,

29.] Exeemiment III.  Let the metal vessel be electrified by
induction, as in the last experiment, let a second metallic body
be suspended by white silk threads near it, and let o metal wire,
similarly suspended, be brought so as to touch simultancously the
clectrified vessel and the second hody.

The sccond body will now be found to be vitreously electrified,
and the vitreous clectrification of the vessel will have diminished.

The clectrical condition has been transferred from the vessel to
the second body by means of the wire. The wire is called a con-
ductor of electricity, and the second hody is said to be electrified
by conduction,

Conductors and Insulators.

Exrerinent IV, If a glass rod, a stick of resin or gutta-percha,
or a white silk thread, had been used instead of the metal wire, no
transfer of electricity would have taken place. Hence these latter
substances are called Non-conductors of electricity, Non-conduc-
tors are used in electrical experiments to support electrified bodies
without carrying off their electricity. They are then called In-
sulators.

The metals are good conductors; air, glass, resins, gutta-percha,
vuleanite, paraffin, &e. are good insulators; bhut, as we shall see
afterwards, all substances resist the passage of electricity, and all
substances allow it to pass, though in exceedingly different degrees.
This subject will be considered when we come to treat of the
Motion of electricity. For the present we shall consider only two
classes of bodies, good conductors, and good insulators.

In Experiment IT an electrified body produced electrification in
the metal vessel while separated from it by air, a non-conducting
medium. Such a medium, considered as transmitting these electrical
eflects without conduction, has heen called by Faraday a Dielectrie
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medium, and the action which takes place through it is called
Induction.

In Experiment IIT the clectrified vessel produced electrification
in the second metallic body through the medium of the wire. Let
us suppose the wire removed, and the clectrified piece of glass taken
out of the vessel without touching it, and removed to a sufficient
distance. The second hody will still exhibit vitrcous electrifica-
tion, but the vessel, when the glass is removed, will have resinous
clectrification. If we now bring the wire into contact with both
bodies, conduction will take place along the wire, and all electri-
fication will disappear from both bodies, shewing that the elec-
trification of the two bodies was equal and opposite.

80.] Exeerivent V. In Experiment II it was shewn that if
a piece of glass, clectrified by rabbing it with resin, is hung up in
an insulated metal vessel, the clectrification observed outside docs
not depend on the position of the glass. If we now introduce the
pieee of resin with which the glass was rubbed into the same vessel,
without touching it or the vessel, it will be found that there is
1o clectrification outside the vessel. TFrom this we conclude that
the electrification of the resin is exactly equal and opposite to that
of the glass. By putting in any number of hodies, clectrified in
any way, it may be shewn that the electrification of the outside of
the vessel is that due to the algebraic sum of all the electrifica-
tions, those being reckoned negative which are resinous.  We have
thus a practical method of adding the clectrical effects of several
bodies without altering the electrification of each.

81.] ExreuMeNT VI, Let a second insulated metallic vessel, B,
be provided, and let the clectrified piece of glass be put into the
first vessel 4, and the clectrified picce of resin into the second vessel
B. Let the two vessels be then put in communication by the metal
wire, as in Experiment III. All signs of electrification will dis-
appear.

Next, let the wire be removed, and let the pieces of glass and of
resin be taken out of the vessels without touching them. It will
he found that 4 is clectrified resinously and B vitreously.

If now the glass and the vessel 4 be introduced together into a
larger insulated vessel C, it will be found that there is no elec-
trification outside C. This shews that the electrification of A is
exactly equal and opposite to that of the picce of glass, and that
of B may be shewn in the same way to be equal and opposite to that
of the piece of resin.
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We have thus obtained a method of charging a vessel with a
quantity of eleetricity exactly equal and opposite to that of an
electrified hody without altering the eleetrifieation of the latter,
and we may in this way charge any number of vessels with exactly
equal quantities of electricity of cither kind, which we may take
for provisional units.

32.] ExverimeNT VII. Let the vessel B, charged with a quan-
tity of positive clectricity, which we shall call, for the present,
unity, be introduced info the larger insulated vessel € without
touching it. Tt will produce a positive cleetrification on the out-
side of ¢. Now let /2 he made to touch the inside of ¢, No change
of the external eleetrifieation will be observed.  If B is now taken
out of € without touching it, and removed to a suflicient distance,
it will be found that B is completely discharged, and that C has
become charged with o unit of positive clectricity.

We have thus a method of transferring the charge of B to C.

Let B be now recharged with a unit of clectricity, introduced
into C already charged, made to touch the inside of €, and re-
moved. It will be found that 7 is again completely discharged,
so that the charge of C'is doubled.

If this process is repeated, it will be found that however highly
C is previously charged, and in whatever way # is charged, when
B is first entirely enclosed in €, then made to touch C, and finally
removed without touching C, the charge of 5 is completely trans-
ferred to C, and B is entirely free from electrification.

This experiment indicates a method of charging a body with
any number of units of electricity.  We shall find, when we come
to the mathematical theory of electricity, that the result of this
experiment affords an accurate test of the truth of the theory.

33.] Before we proceed to the investigation of the law of
electrical foree, let us enumerate the facts we have already esta-
blished.

By placing any clectrified system inside an insulated hollow con-
ducting vessel, and examining the resultant eflfect on the outside
of the vessel, we ascertain the characler of the total electrification
of the system placed inside, without any communication of elec-
tricity between the different hodies of the system.

The electrification of the outside of the vessel may he tested
with great delicacy by putting it in communication with an elec-
troscope.

We may suppose the clectroscope to consist of a strip of gold
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34-] ELECTRICITY AS A QUANTITY. 35

leaf hanging between two bodies charged, one positively, and the
other negatively, If the gold leaf becomes clectrified it will incline
towards the body whose electrification is opposite to its own. By
increasing the electrification of the two bodies and the delicacy of
the suspension, an exceedingly small clectrification of the gold leaf
may be detected.

When we come to deseribe electrometers and multipliers we
shall find that there are still more delicate methods of detecting
clectrification and of testing the accuracy of our theorems, but at
present we shall suppose the testing to be made by connecling the
hollow vessel with a gold leaf electroscope.

This mecthod was used by Faraday in his very admirable de-
monstration of the Inws of eleetrical phenomena ¥,

34.] 1. The total clectrification of a hody, or system of bodics,
remains always the same, except in so far as it receives electrifi-
cution from or gives electrification to other hodies.

In all electrical experiments the electrification of hodies is found
to change, but it is always found that this change is due to want
of perfeet insulation, and that as the means of insulation are im-
proved, the loss of clectrification becomes less. We may therefore
assert that the electrification of a body placed in a perfectly in-
sulating medium would remain perfeetly constant,

II. When one body clectrifies another by conduction, the total
clectrification of the two bodies remains the same, that is, the one
loses as much positive or gains as much negative electrification as
the other gains of positive or loses of negative electrification,

For if the two bodies are enclosed in the hollow vessel, no change
of the total electrification is observed.

III. When electrification is produced by frietion, or by any
other known method, equal quantities of positive and negative clee-
trification are produced.

For the electrification of the whole system may be tested in
the hollow vessel, or the process of electrification may be carried
on within the vessel itself, and however intense the eleetrification of
the parts of the system may be, the electrification of the whole,
as indicated by the gold leaf eleetroscope, is invariably zero.

The clectrifieation of a body is therefore a physical quantity
apable of measurement, and two or more electrifications can be
combined experimentally with a result of the same kind as when

‘;1'9011 Static Electrical Inductive Action.' Phil. May., 1843, or Exp. Res., vol. ii.
e 22l
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two quantitics are added algebraically. We therefore are entitled
to use language fitted to deal with clectrification as a quantity as
well as a quality, and to speak of any eclectrified body as ¢ charged
with a certain quantity of positive or negative electricity.’

85.] While admitting electricity, as we have now done, to the
rank of a physical quantity, we must not too hastily assume that
it is, or is not, a substance, or that it is, or is not, a form of
energy, or that it belongs to any known category of physical
quantitics. All that we have hitherto proved is that it cannot
be created or annihilated, so that if the total quantity of elec-
tricity within a closed surface is increased or diminished, the in-
crease or diminution must have passed in or out through the closed
surface.

This is true of matter, and is expressed by the equation known as
the Equation of Continuity in Hydrodynamics.

It is not true of heat, for heat may be increased or diminished
within a closed surface, without passing in or out through the
surface, by the transformation of some other form of encrgy into
heat, or of heat into some other form of energy.

It is not true even of energy in general if we admit the imme-
diate action of hodies at a distance. Yor a body outside the closed
surfaice may make an exchange of energy with a body within
the surface. But if all apparent action at a distance is the
result of the action between the parts of an intervening medium,
and if the nature of this action of the parts of the medium is
clearly understood, then it is conceivable that in all cases of the
increase or diminution of the energy within a closed surface we
may be able to trace the passage of the energy in or out through
that surface.

There is, however, another reason which warrants us in asserting
that electricity, as a physical quantity, synonymous with the total
clectrification of a body, is not, like heat, a form of energy. An
clectrified system has a certain amount of energy, and this energy
can be caleulated by multiplying the quantity of electricity in
cach of its parts by another physical quantity, called the Potential
of that part, and taking half the sum of the products. The quan-
tities ¢ Electricity > and ¢ Potential,” when multiplied together,
produce the quantity ¢Energy.” It is impossible, therefore, that
electricity and energy should be quantities of the same category, for

electricity is only one of the factors of cnergy, the other factor
being ¢ Potential .’
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Energy, which is the product of these factors, may also be con-
sidered as the product of several other pairs of factors, such as

A Force x A distance through which the force is to act.
A Mass x Gravitation acting through a certain height.
A Mass x Half the square of its velocity.

A Pressure x A volume of fluid introduced into a vessel ab

that pressure.

A Chemical Affinity x A chemical change, measured by the number
of clectro-chemical equivalents which enter
into combination,

If we obtain distinct mechanical ideas of the nature of electric
potential, we may combine these with the idea of energy to
determine the physical category in which ¢ Electricity’ is to be
placed.

36.] In most theories on the subject, Electricity is treated as
a substance, but inasmuch as there are two kinds of electrification
which, heing combined, annul each other, and since we cannot
conceive of two substances annulling each other, a distinetion has
been drawn between Free Electricity and Combined Electricity.

Theory of Two Fluids.

In the theory called that of Two Fluids, all bodies, in their
unelectrified state, are supposed to be charged with equal quan-
tities of positive and negative clectricity. These quantities are
supposed to be so great that mo process of electrification has ever
yet deprived a body of all the electricity of either kind. The pro-
cess of electrification, according to this theory, consists in taking
a certain quantity P of positive clectricity from the body 4 and
communicating it to B, or in taking a quantity & of negative
eleetricity from B and communicating it to A, or in some com-
bination of these processes.

The result will be that 4 will have P+ /N units of negative
electricity over and above its remaining positive electricity, which
is supposed to be in a state of combination with an equal quantity
of negative clectricity. This quantity 24N is called the Free
electricity, the rest is called the Combined, Latent, or Tixed elec-
trieity.

Tn most expositions of this theory the two clectricities are called
“ Fluids,” because they are capable of being transferred from one
body to another, and are, within conducting bodies, extremely
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mobile.  The other properties of fluids, such as their inertia,
weight, and elasticity, are not attributed to them by those who
have used the theory for merely mathematical purposes; but the
usc of the word Fluid has heen apt to mislead the vulgar, ineluding
many men of science who are not natural philosophers, and who
have seized on the word Fluid as the only term in the statement
of the theory which seemed intelligible to them,

We shall sce that the mathematieal treatment of the subject has
been greatly developed by writers who express themselves in terms
of the “Two Fluids’ theory. Their results, however, have been
deduced entirely from data which can be proved by experiment,
and which must therefore be true, whether we adopt the theory of
two fluids or not. The experimental verification of the mathe-
matical results therefore is no evidence for or against the peculiar
doctrines of this theory.

The introduction of two fluids permits us to consider the negative
clectrification of A and the positive electrification of B as the effect
of any one of three different processes which would lead to the same
result.  We have already supposed it produced by the transfer of
P units of positive electricity from A to B, together with the
transfer of N units of negative electricity from 5 to A But if
P+ N units of positive clectricity had been transferred from 4
to B, orif P+ units of negative clectricity had been transferred
from B to 4, the resulting ¢ free electricity” on 4 and on B would
have been the same as hefore, but the quantity of ¢combined
electricity” in .4 would have heen less in the second case and greater
dn the third than it was in the first,

It would appear therefore, according to this theory, that it is
possible to alter not only the amount of free electricity in a body,
but the amount of combined eleetricity. But no phenomena have
ever been observed in electrified bodies which can be traced to the
varying amount. of their combined electricities. Hence cither the
combined electricities have no observable properties, or the amount
of the combined clectricities is incapable of variation. The first
of these alternatives presents no difficulty to the mere mathema-
tician, who attributes no properties to the fluids except those of
attraction and repulsion, for in this point of view the two fluids
simply annul one another, and their combination is a true mathe-
matical zero.  But to those who cannot use the word Fluid without,
thinking of a substance it is difficult to conceive that the com-
bination of the two fluids shall have no properties at all, so that
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the addition of more or less of the combination to a body shall not
in any way affect it, either Dy increasing its mass or its weight, or
altering some of its other properties. Hence it has been supposed
by some, that in every process of electrification exuctly equal (uan-
tities of the two fluids are transferred in opposite directions, so
that the total quantity of the two fluids in any body taken to-
gether remains always the same. By this new law they ¢ contrive
to save appearances,’ forgetting that there would have been no need
of the law except to reconcile the ¢ two fluids’ theory with facts,
and to prevent it from predicting non-existent phenomena.

Theory of One Fluid.

37.] In the theory of One Fluid everything is the same as in
the theory of Two Iluids except that, instead of supposing the two
substances equal and opposite in all respects, one of them, gene-
rally the negative one, has been endowed with the properties and
name of Ordinary Matter, while the other retains the name of The
Eleetric Fluid, The particles of the fluid are supposed to repel
one avother according to the law of the inverse square of the
distance, and to attract those of matter according to the same
law. Those of matter are supposed to repel each other and atiract
those of electricity. The attraction, however, Letween units of the
different substances at unit of distance is supposed to be a very little
greater than the repulsion between units of the same kind, so that
a unit of matter combined with a unit of electricity will exert a
force of attraction on a similar combination at a distance, this
force, however, heing exceedingly small compared with the foree
between two uncombined units.

This residual foree 1s supposed to account for the attraction of
gravitation.  Unelectrified bodies are supposed to be charged with
as many units of electricity as they contain of ordinary matter.
When they contain more electricity or less, they are said to be
positively or negatively clectrified.

This theory does not, like the Two-Iluid theory, explain too
much. It requires us, however, to suppose the mass of the electric
fluid so small that no attainable positive or negative electrification
has yet perceptibly increased or diminished cither the mass or the
weight of a body, and it has not yet heen able to assign suflicient
reasons why the vitreous rather than the resinous electrification
should be supposed due to an ewcess of electricity.

One objection has sometimes been urged against this theory by
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men who ought to have reasoned better. It has been said that
the doctrine that the particles of matler uncombined with elec-
tricity 7¢pel one another, is in direct antagonism with the well-
established fact that every particle of matter affracls every other
particle throughout the universe. If the theory of One Fluid were
trae we should have the heavenly bodies repelling on~ another,

But it is manifest that the heavenly bodies, according to this
theory, if they consisted of matter uncombined with electricity,
would be in the highest state of negative clectrification, and would
repel each other.  We have no reason to believe that they are in
such a highly electrified state, or could be maintained in that
state. The earth and all the bodies whose attraction has been
observed are rather in an unelectrified state, that is, they contain
the normal charge of electricity, and the only action between them
is the residual force lately mentioned. The artificial manner, how-
ever, in which this residual foree is introduced is a much more
valid objection to the theory.

In the present treatise I propose, at different stages of the in-
vestigation, to test the different theories in the light of additional
classes of phenomena. Yor my own part, I look for additional
light on the nature of clectricity from a study of what takes place
in the space intervening hetween the electrified hodies. Such is the
essential character of the mode of investigation pursued by Faraday
in his Keperimental Researches, and as we go on I intend to exhibit
the results, as developed by Faraday, W. Thomson, &e., in a con-
neeted and mathematical form, so that we may pereeive what
phenomena are explained equally well by all the theories, and what
phenomena indicate the peculiar difficulties of each theory.

Measurement of the Force between Electrified Bodies.

38.] Forces may he measured in various ways. For instance,
one of the bodies may be suspended from one arm of a delicate
balance, and weights suspended from the other arm, till the body,
when unclectrified, is in equilibrium, The other body may then
be placed at a known distance heneath the first, so that the
attraction or repulsion of the bodies when eleetrified may inerease
or diminish the apparent weight of the first. The weight which
must be added to or taken from the other arm, when expressed
in dynamical measure, will measure the force between the bodies.
This arrangement was used by Sir W, Snow Harris, and is that
adopted in Sir W. Thomson's absolute electrometers. Sce Art. 217.
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It is sometimes more convenient to use a torsion-balance in
which a horizontal arm is suspended by a fine wire or fibre, so as
to be capable of vibrating about the vertical wire as an axis, and
the body is attached to one end of the arm and acted on by the
force in the tangential direction, so as to turn the arm round the
vertical axis, and so twist the suspension wire through a certain
angle. The torsional rigidity of the wire is found by observing
the time of oscillation of the arm, the moment of inertia of the
arm being otherwise known, and from the angle of torsion and
the torsional rigidity the force of attraction or repulsion can he
deduced. The torsion-balance was devised by Michell for the de-
termination of the force of gravitation between small bodies, and
was used by Cavendish for this purpose. Coulomb, working in-
dependently of these philosophers, reinvented it, and successfully
applied it to discover the laws of clectric and magnetic forces;
and the torsion-halance has ever since been used in all rescarches
where small forces have to be measured. See Art. 215.

89.] Let us suppose that by either of these methods we can
measure the force between two electrified bodies.  We shall suppose
the dimensions of the bodies small compared with the distance
between them, so that the result may not be much altered by
any inequality of distribution of the clectrification on either body,
and we shall suppose that both bodies are so suspended in air as
to be at a considerable distance from other bodies on which they
might induce electrification.

1t is then found that if the bodies are placed at a fixed distance
and charged respectively with ¢ and ¢ of our provisional units of
clectricity, they will repel each other with a force proportional
to the product of ¢ and ¢’. If cither e or ¢ is negative, that is,
if one of the charges is vitreous and the other resinous, the force
will be attractive, but if both ¢ and ¢ are negative the force is again
repulsive.

We may suppose the first body, 4, charged with 2 units of
vitreous and 2 units of resinous clectricity, which may be con-
ceived separately placed within the body, as in Experiment V.

Let the second body, B, be charged with 2 units of positive
and » units of negative electricity.

Then cach of the  positive units in 4 will repel each of the '
positive units in B with a certain force, say /, making a total effect
equal to wai/.

Sinee the effeet of negative electricity is exactly equal and
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opposite to that of positive clectricity, each of the u positive units
in o will attract each of the »” negative units in B with the same
force /£, making a total effect equal to mw’f.

Similarly the # negative units in 4 will attract the »’ positive
units in B with a force nulf, and will vepel the negative units
in BB with a force za’/. .

The total repulsion will thercfore he (mn’ + » w)/; and the total
attraction will be (ma’+ w'n) /.

The resultant repulsion will be

(el + 00’ —~ma’ ') f - ov (m—n) (e’ —a)f.

Now m—n=e is the algebraical value of the charge on A, and
m’—n'=¢ is that of the charge on B, so that the resultant re-
pulsion may be written e¢’ £, the quantities ¢ and ¢’ being always
understood to he taken with their proper signs,

Variation of the Force with the Distunce.

40.] Having established the law of force at a fixed distance,
we may measure the foree hetween bodies charged in a constant
manner and placed at different distances. Tt is found by direct
measurement that the foree, whether of attraction or repulsion,
varics inversely as the square of the distance, so that if /' is the
repulsion hetween two units at unit distance, the repulsion at dis-
tance 7 will be 77~*, and the general expression for the repulsion
between ¢ units and ¢ units at distance r will be

Jed r2,

Defivition of the Flectrostatio Unit of Electricity,

41.] We have hitherto used a wholly arbitrary standard for our
unit, of clectricity, namely, the electrification of 1 certain piece of
glass as it happened to be electrified at the commencement of our
experiments,  'We are now able to select a unit on g definite prin-
ciple, and in order that this unit may belong to a general system
we define it so that /'may be unity, or in other words—

The electrostatic unit of electricity is that quantity of electricity
which, when placed at unit of distance Jrom an equal guantity, repels
b acith wnil of force.

This unit is called the Electrostatic unit to distinguish it from
the Eleetromagnetic unit, to be afterwards defined.

We may now write the general law of electrical action in the
simple form FP=ctr 2, or,
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The repulsion belween two small bodics charged respectively with ¢ and
¢ units of electricily is numerically equal to the product of the charges
divided by the square of the distance.

Dimensions of the Electrostatic Unit of Quantity.

42.) If [@] is the concrete clectrostatic unit of quantity itsclf,
and ¢, ¢ the numerieal values of particular quantitiess if [7] is
the unit of length, and » the numerical value of the distance; and
if [#7] is the unit of foree, and F the numerieal value of the foree,
then the equation becomes

F[F] = edr® QY] [Z-%];
whence [Q] = [/ m
= [LET- M3).

This unit is called the Electrostatic Unit of electricity. Other
units may be employed for practical purposes, and in other depart-
ments of clectrical science, but in the equations of electrostatics
quantitics of clectricity are understood to be estimated in electro-
static units, just as in physical astronomy we employ a unit of
mass which is founded on the phenomena of gravitation, and which
differs from the units of mass in common use.

Proof of the Law of Liectrical Lorce.

43.] The experiments of Coulomb with the torsion-balance may
be considered to have established the law of force with a certain
approximation to accuracy. Experiments of this kind, however,
are rendered difficult, and in some degrec uncertain, by several
disturbing causes, which must be carcfully traced and corrected for.

In the first place, the two clectrificd bodies must be of sensible
dimensions relative to the distance between them, in order to be
capuble of carrying charges sufficient to produce measurable forces.
The action of cach body will then produce an effect on the dis-
tribution of electricity on the other, so that the charge cannot be
considered as evenly distributed over the surface, or collected at
the centre of gravity; but its effect must be caleulated by an
intricate investigation. This, however, has been done as regards
two spheres by Poisson in an extremely able manner, and the
investigation has been greatly simplified by Sir W. Thomson in
his Z%eory of Electrical Tmages. See Arts. 172-174.

Another difficulty arises from the action of the electricity
induced on the sides of the case containing the instrument. By
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making the inside of the instrument accurately cylindrie, and
making its inner surface of metal, this effect can be rendered
definite and measurable,

An independent difficulty arises from the imperfect insulation
of the bodies, on account of which the charge continually de-
creases. Coulomb investigated the law of dissipation, and made
corrections for it in his experiments.

The methods of insulating charged conductors, and of measuring
electrical effects, have been greatly improved since the time of
Coulomb, particularly by Sir W, Thomson; but the perfect ac-
curacy of Coulomb’s law of force is established, not by any direct
experiments and measurements (which may be used as illustrations
of the law), but by a mathematical consideration of the pheno-
menon deseribed as Experiment, V IT, namely, that an electrified
conductor B, if made to touch the inside of a hollow closed con-
ductor Cand then withdrawn without touching C, is perfectly dis-
charged, in whatever manner the outside of ¢ may be electrified.
By means of delicate electroscopes it is casy to shew that no
electricity remains on B after the operation, and by the mathe-
matical theory given at Art. 74, this can only be the case if the
force varies inversely as the square of the distance, for if the law
had been of any different form 2 would have been clectrified.

The Flectric Field.

44.] The Eleetric Field is the portion of space in the neigh-
bourhood of electrified bodies, considered with reference to electric
phenomena. It may be occupied by air or other bodics, or it
may be a so-called vacuum, from which we have withdrawn every
substance which we can act upon with the means at our dis-
posal.

If an electrified body he placed at any part of the clectric field
it will he acted on by a foree which will depend, in general, on
the shape of the body and on its charge, if the body is so highly .
charged us to produce u sensible disturhance in the previous clec-
trification of the other bodics.

But if the body is very small and its charge also very small,
the electrification of the other bodies will not be sensibly disturhed,
and we may consider the body as indicating by its centre of gravity
a certain point of the field. The force acting on the body will
then be proportional to its charge, and will be reversed when the
charge is reversed.
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Let e be the charge of the body, and F the force acting on the
body in a certain direction, then when e is very small #' is propor-
tional to ¢, or 7 = Re,

where It is a quantity depending on the other bodies in the field.
If the charge e could be made cqual to unity without disturbing
the electrification of other bodies we should have ' = 2.

We shall call R the Resultant clectric force at the given point
of the field.

FElectric Potential.

45.] If the small body cmrying the small charge e be moved
from the given point to an indefinite distance from the clectrified
bodies, it will experience at each point of its course a force e,
where R varies from point to point of the course. Let the whole
work done on the body by these electrical forces be Ve, then Vis
the potential at the point of the field from which the body started.
If the charge e could be made cqual to unity without disturbing
the electrification of other bodies, we might define the potential at
any puint as the work done on a body charged with unit of elec-
tricity in moving from that point to an infinite distance.

A body electrified positively tends to move from places of greater
positive potential to places of smaller positive, or of mnegative
potential, and a body negatively electrified tends to move in the
opposite direction.

In a conductor the electrification is distributed exactly as if
it were free to move in the conductor according to the same law.
If thercfore two parts of a conductor have different potentials,
positive electricity will move from the part having greater potential
to the part having less potential as long as that difference con-
tinues. A conductor therefore cannot be in electrical equilibrium
unless every point in it has the same potential. This potential is
called the Potential of the Conductor.

Equipotential Suyfuwces.

46.] If a surface described or supposed to be described in the
clectric field is such that the clectric potential is the same at every
point of the surface it is called an Equipotential surface.

An electrified point constrained to rest upon such a surface will
have no tendency to move from one part of the surface to another,
because the potential is the same at every point. An equipotential
surface is therefore a surface of equilibrium or a level surface.
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The resultant force at any point of the surface is in the direction
of the normal to the surface, and the magnitude of the force is such
that the work done on an electrical unit in passing from the surface
7 to the surface V" is V'— 7".

No two equipotential surfaces having different potentials can
mect one another, because the same point cannot have more than
one potential, but one equipotential surface may meet itself, and
this takes place at all points and lines of equilibrium.

The surface of a conductor in electrical equilibrium is necessarily
an equipotential surface. If the electrification of the conductor is
positive over the whole surface, then the potential will diminish as
we move away from the surface on every side, and the conductor
will be surrounded by a series of surfaces of lower potential.

But if (owing to the action of external eleetrified bodies) some
regions of the conductor are electrified positively and others ne-
gatively, the complete equipotential surface will consist of the
surface of the conductor itself together with a system of other
surfaces, meeting the surface of the conductor in the lines which
divide the positive from the negative regions. These lines will
be lines of equilibrium, so that an electrified point placed on one
of these lines will experience no force in any direction.

When the surface of a conductor is electrified positively in some
parts and negatively in others, there must be some other electritied
body in the field besides itsell. Tor if we allow a positively
electrified point, starting from a positively electrified part of the
surface, 10 move always in the direction of the resultant force upon
it, the potential at the point will continually diminish till the point
reaches either a negatively electrified surface at a potential less than
that of the first conductor, or moves oflf to an infinite distance.
Since the potential at an infinite distance is zero, the latter case
can only occur when the potential of the conductor is positive.

In the same way a negatively electrified point, moving off from
a negatively electrified part of the surface, must either reach a posi-
tively clectrified surface, or pass off' to infinity, and the latter case
can only happen when the potential of the conductor 1s negative.

Therefore, if hoth positive and negative electrification exists on
a conductor, there must Le some other hody in the field whose
potential has the same sign as that of the conductor but a greater
numerical value, and if a conductor of any form is alone in the
field the electrification of every part is of the same sign as the
potential of the conductor.
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Lines of Iorce.

47.] The line described by a point moving always in the dircc-
tion of the resultant force is called a Line of force. It cuts the
equipotential surfaces at right angles. The properties of lines of
force will be more fully explained afterwards, because Faraday has
expressed many of the laws of clectrical action in terms of his
conception of lines of force drawn in the electric field, and indicating
both the direction and the magnitude of the force at every point.

Bleetric Tension.

48.] Since the surface of a conductor is an equipotential surface,
the resultant force is normal to the surface, and it will Le shewn
in Art. 78 that it is proportional to the superficial density of the
electrification, Hence the electricity on any small area of the
gurface will be acted on by a force tending from the conductor
and proportional to the product of the resultant force and the
density, that is, proportional to the square of the resultant foree

This force which acts outwards as a temsion on every part of
the conductor will be called eleetric Tension. It is measured like
ordinary mechanical {ension, by the force exerted on unit of area,

The word Tension has been used by electricians in several vague
senses, and it has been attempted to adopt it in mathematical
language as a synonym for Potential ; but on examining the cases
in which the word has been used, I think it will be more con-
sistent with usage and with mechanical analogy to understund
by tension a pulling forec of so many pounds per square inch
exerted on the surface of a conductor or elsewhere, We shall find
that the conception of Faraday, that this electric tension exists not
only at the clectrified surface but all along the lines of force, leads
to a theory of electric action as a phenomenon of stress in a
medinm.

Llectromotive Force.

49.] When two conductors at different potentials are conneeted
by a thin conducting wire, the tendency of electricity to flow
along the wire is meusmed by the difference of the potentials of
the two bodies. The difference of potentials between two con-
ductors or two points is thercfore called the Electromotive force

between them.
Electromotive force may arise from other causes than difference
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of potential, but these causes are not considered in treating of sta-
tical clectricity, We shall consider them when we come to chemical
actions, motions of magnets, inequalities of temperature, &c.

Capacily of" « Conductor.

50.] If one conductor is insulated while all the surrounding con-
ductors are kept at the zero potential by being put in commu-
nication with the earth, and if the conductor, when charged with
a quantity % of electricity, has a potential /’, the ratio of /7 to vV
is called the Capacity of the conductor. If the conductor is com-
pletely cuclosed within a conducting vessel without touching i,
then the charge on the inner conductor will be equal and op-
posite to the charge on the inner surface of the outer conductor,
and will be equal to the capacity of the inner conductor multiplied
by the difference of the potentials of the two conductors.

Llectric Adecumulalors.

A system consisting of two conductors whose opposed surfuces
are separated from each other by a thin stratum of an insulating
medium is called an electric Accumulator. Its capacity is directly
proportional to the area of the opposed surfaces and inversely pro-
portional to the thickness of the stratum between them. A Leyden
jar is an accumulator in which glass is the insulating medium.
Accumulators are sometimes called Condensers, but I prefer to
restrict the term ¢condenser’ to an instrument which is used not to
hold electricity but to increase its superficial density.

PROPERTIES OF BODIES IN RELATION TO STATICAL ELECTRICITY,

Resistance to the Passage of Klectricily through a Body.

51.] When a charge of electricity is communicated to any part
of a mass of metal the electricity is rapidly transferred from places
of high to places of low potential till the potential of the whole
mass becomes the sume. In the case of pieces of metal used in
ordinary experiments this process is completed in a time too short
to be observed, but in the case of very long and thin wires, such
as those used in telegraphs, the potential does not become uniform
till after a sensible time, on account of the resistance of the wire
to the passage of electricity through it.

The resistance to the passage of electricity is exceedingly dif-
ferent in different substances, as may be seen from the tables at

LT AN

B TY

PO ATV



51.] ELECTRIC RESISTANCE. 49

Arts. 362, 366, and 369, which will be explained in treating of
Electric Currents.

All the metals are good conductors, though the resistance of
lead is 12 times that of copper or silver, that of iron 6 times,
and that of mercury 60 times that of copper. The resistance of all
metals increases as their temperature rises.

Seleninm in its crystalline state may also be regarded as a con-
ductor, though its resistance is 3.7 x 10'2 times that of a piece
of copper of the same dimensions. Its resistance increases as the
temperature rises. Selenium in the amorphous form is a good
insulator, like sulphur,

Many liquids conduct electricity by clectrolysis. This mode of
conduction will be considered in Part IL.  For the present, we may
regard all liquids confaining water and all damp bodies as con-
ductors, far inferior to the metals, but incapable of insulating a
charge of clectricity for a sufficient time to be observed.

On the other hand, the gases at the atmospherie pressure, whether
dry or moist, ave insulators so nearly perfeet when the electric tension
is small that we have as yet obtained no evidence of electricity passing
through them by ordinary conduction. The gradual loss of charge
by clectrified hodies may in every case be traced to imperfect insu-
lation in the supports, the electricity cither passing through the
substance of the support or creeping over its surface. Hence, when
two charged bodies are hung up near each other, they will preserve
their charges longer if they are electrified in opposite ways, than if
they are clectrified in the same way. For though the electromotive
force tending to make the clectricity pass through the air between
them is much greater when they are oppositely clectrified, no per-
ceptible loss oceurs in this way. The actual loss takes place through
the supports, and the clectromotive force through the supports is
greatest when the bodies ave electrified in the same way. The result
appears anomalous only when we expeet the loss to occur by the
passage of clectricity throngh the air between the bodies.

Certain kinds of glass when cold are marvelously perfect in-
sulators, and Sir W. Thomson has preserved charges of electricity
for years in bulbs hermetically scaled. The same glass, however,
lecomes a conductor at a temperature below that of hoiling water.

Gutta-percha, caoutchoue, vulcanite, paraffin, and resins are good
insulators, the resistance of gutta-percha at 75°F. being about
6 x 10?? times that of copper.

Ice, crystals, and solidified electrolytes, arc also insulators.

VOL. L. E
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Certain liquids, such as naphtha, turpentine, and some oils, are
insulators, but inferior to most of the solid insulators,

The resistance of most substances, exeept the metals, and sclenium
and carbon, seems to diminish as the temperature rises,

DIELECTRICS,
Specific Inductive Capacity.

52.] All bodies whose insulating power is such that when they
are placed between two conductors at different potentials the elec-
tromotive force acting on them does not immediately distribute
their electricity so as to reduce the potential to a constant value, are
called by Faraday Dieleetries,

Faraday discovered that the capacity of an acenmulator depends
on the nature of the insulating medium between the two conductors,
as well as on the dimensions and relative position of the conductors
themselves. By substituting other insulating media for air as the
dieleetric of the accumulator, withoust altering it in any other
respeet, he found that when air and other gases were employed as
the insulating medium the capacity of the accumulator remained the
same, but that when shell-lac, sulphur, glass, &ec., were substituted
for air, the capacity was increased in a ratio which was different
for each substance.

The ratio of the capacity of an accumulator formed of any di-
electric medium to the eapacity of an accumulator of the same form
and dimensions filled with air, was named by Faraday the Specific
Inductive Capaeity of the diclectric medium. It is equal to unity
for air and other gases at all pressures, and probably at all tempe-
ratures, and it is greater than unity for all other liquid or solid
dicleetrics which have heen examined.

If the diclectric is not a good insulator, it is difficult to mea-
sure its inductive capacity, hecause the aceumulator will not hold a
charge for a sufficient time to allow it to be measured ; but it is
certain that inductive capacity is a property not confined to good
insulators, and it is probable that it exists in all bodies.

Absorption of Electricity.
53.] It is found that when an sccumulator is formed of certain
dielectrics, the following phenomena oceur.
When the accumulator has been for some time eleetrified and is
then suddenly discharged and again insulated, it becomes recharged
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54.] ELECTRIC ABSORPTION, 51

in the same sense as at first, but to a smaller degree, so that it may
be discharged again several times in succession, these discharges
always diminishing. This phenomenon is called that of the Re-
sidual Discharge.

The instantancous discharge appears always to he proportional
to the difference of potentials at the instant of discharge, and the
ratio of these quantities is the true capacity of the accumulator;
but if the contact of the discharger is prolonged so as to include
some of the residual discharge, the apparent capacity of the accu-
mulator, caleulated from such a discharge, will be too great.

The accumulator if charged and left insulated appears to lose its
charge by conduction, but it is found that the proportionate rate
of loss is much greater at first than it is afterwards, so that the
measure of conductivity, if deduced from what takes place at first,
would be too great. Thus, when the insulation of a submarine
cable is tested, the insulation appears to improve as the electrifi-
cation continues,

Thermal phenomena of o kind at first sight analogous take place
in the case of the conduction of heat when the opposite sides of a
body are kept at different temperatures. In the case of heat we
know that they depend on the heat taken in and given out by the
body itself. Hence, in the case of the eleetrical phenomena, it
has heen supposed that clectricity is absorbed and emitted by the
paris of the hody. We shall sec, however, in Art. 329, that the
phenomena can be explained without the hypothesis of absorption of
electricity, by supposing the diclectric in some degree heterogeneous.

That the phenomenon called Electric Absorption is not an
actual absorption of clectricity by the substance may be shewn by
charging the substance in any manner with electricity while it is
surrounded by a closed metallic insulated vessel. If, when the
substance is charged and insulated, the vessel be instantaneously
discharged and then left insulated, no charge is ever communicated
to the vessel by the gradual dissipation of the electrification of the
charged substance within it.

54.] This fact is expressed by the statement of Faraday that
it is impossible to charge matter with an absolute and independent
charge of onc kind of electricity *.

In fact it appears from the result of every experiment which
has been tried that in whatever way clectrical actions may take

*® Eup. Res., vol. i, series xi. ¥ ii.  On the Absolute Charge of Matter,” and (1244).
E 2
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place among a system of hodies surrounded by a metallic vessel, the
charge on the outside of thut vessel is not altered.

Now if any portion of clectricity could be forced into a body
50 as to be absorbed in it, or to become latent, or in any way
to exist in it, without being connected with an equal portion of
the opposite electricity by lines of induction, or if, after having
being absorbed, it could gradually emerge and retarn to its or-
dinury mode of action, we should find some change of electrifica-
tion in the surrounding vessel.

As this is never found to be the case, TFaraday concluded that
it 1s impossible to communicate an absolute charge to matter, and
that no portion of matter can by any change of state evolve or
render latent one kind of clectricity or the other. He therefore
regarded induction as ‘the essential function both in the first
development and the consequent phenomena of electrieity.” His
“induction’ is (1298) a polarized state of the particles of the
dieleetric, ench particle being positive on one side and negative
on the other, the positive and the negative electrification of each
particle being always exactly equal,

Disruptive Discharge*.

55.] If the clectromotive force acting at any point of a dielectric
Is gradually increased, a limit is at length reached at which there
is a sudden electrical discharge through the diclectrie, generally
accompanied with light and sound, and with a temporary or per-
manent ruplure of the dicleetric.

The intensity of the clectromotive foree when this takes place
depends on the nature of the dieleetric. Tt is greater, for instance,
in dense air than in rare air, and greater in glass than in air, but
in every case, if the electromotive force be made great cnough,
the dielectric gives way and its insulating power is destroyed, so
that a current of electricity takes place through it. It is for this
reason that distributions of electricity for which the electric resultant
foree becomes anywhere infinite cannot exist in nature.

The Electric Glow,

Thus, when a conductor having a sharp point is electrified,
the theory, huased on the hypothesis that it retains its charge,
leads to the conclusion that as we approach the point the super-
ficial density of the electricity increases without limit, so that at
the point itself the surface-density, and therefore the resultant

* See Furaday, £rp. Res., vol. i., series xii. and xiii,
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electrical force, would be infinite. If the air, or other surrounding
diclectrie, had an invincible insulating power, this result would
actually occur ; but the fact is, that as soon as the resultant force
in the ncighhourhood of the point has reached a certain limit, the
insnlating power of the air gives way, so that the air close to
the point becomes a conductor. At a certain distance from the
point the resultant force is not sufficient to break through the
insulation of the air, so that the electric current is checked, and
the clectricity accumulates in the air round the point.

The point is thus surrounded by particles of air charged with
electricity of the same kind with its own. The effect of this charged
air round the point is to relieve the air at the point itself from
part of the enormous clectromotive force which it would have ex-
perienced if the conductor alone had been electrified.  In fact the
surface of the electrified body is no longer pointed, because the
point is enveloped by a rounded mass of electrified air, the surface
of which, rather than that of the solid conductor, may be regarded
as the outer electrified surface.

If this portion of eclectrified air could be kept still, the elec-
trified body would retain its charge, if not on itself at least in its
neighbourhood, but the charged particles of air being free to move
under the action of clectrical force, tend to move away from the elec-
trified hody because it is charged with the same kind of eleetricity.
The charged particles of air therefore tend to move off in the direc-
tion of the lines. of force and to approach those surrounding bodies
which are oppositely electrified. When they are gone, other un-
charged particles take their place round the point, and since these
cannot shicld those next the point itself from the excessive elec-
tric tension, a new discharge takes place, after which the newly
charged particles move off, and so on as long as the body remains
electrified.

In this way the following phenomena are produced :—At and
close to the point there is a steady glow, arising from the con-
stant discharges which are taking place between the point and the
air very near it.

The charged particles of air tend to move off in the same general
direction, and thus produce a current of air from the point, con-
sisting of the charged particles, and probably of others carried along
by them. By artificially aiding this current we may increase the
glow, and by checking the formation of the current we may pre-
vent the continuance of the glow. :
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The electric wind in the neighbourhood of the point is sometimes
very rapid, but it soon loses its velocity, and the air with its charged
particles is carried about with the general motions of the atmo-
sphere, and constitutes an invisible electric cloud.  When the charged
particles come near to any conducting surfuce, such as a wall, they
induce on that surface an clectrification opposite to their own, and
are then attracted towards the wall, but since the clectromotive
foree is small they may remain for a long time near the wall
without being drawn up to the swrface and discharged. They
thus form an electrified atmosphere clinging to conductors, the pre-
sence of which may sometimes be deteeted by the clectrometer.
The clectrical forees, however, acting between charged portions
of air and other bodies are exceedingly feehle compared with the
forces which produce winds arising from inequalities of density
duc to differcnees of temperature, so that it is very improbable
that any observable part of the motion of ordinary thunder clouds
arises from electrical causes,

The pussage of electricity from one place to another by the
motion of charged particles is called Electrical Conveetion or Con-
vective Discharge.

The electrical glow is therefore produced by the constant passage
of clectricity through a small portion of air in which the tension
is very high, so as to charge the surrounding particles of air which
are continually swept off by the electric wind, which is an essential
part of the phenomenon,

The glow is more easily formed in rare air than in dense air,
and more easily when the point is positive than when it is negative,
This and many other differences between positive and negative elec-
trifieation must be studied by those who desire to discover some-
thing about the nature of electricity. They have not, however,
been satisfactorily brought to hear upon any existing theory.

The Llectric Brush.

56.] The electric brush is a phenomenon which may be pro-
duced by clectrifying a blunt point or small ball so as to produce
an electrie field in which the tension diminishes, but in a less rapid
manner, as we leave the sarfice. It consists of a succession of
discharges, ramifying as they diverge from the ball into the air,
and terminating either by charging portions of air or by reaching
some other conductor. Tt is accompanied by a sound, the pitch of
which depends on the interval between the successive discharges,
and there is no current of air as in the case of the glow,

*
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The Electric Spark.

57.] When the tension in the space between two conductors is
considerable all the way between them, as in the case of two balls
whose distance is not great compared with their radii, the discharge,
when it occurs, usually takes the form of a spark, by which nearly
the whole clectrification is discharged at once.

In this case, when any part of the dielectric has given way,
the parts on cither side of it in the direction of the electric force
are put into a state of greater tension so that they also give way,
and so the discharge proceeds right through the dielectric, just as
when a little rent is made in the edge of a piece of paper a tension
applied to the paper in the direction of the edge causes the paper to
be torn through, beginning at the rent, but diverging occasionally
where there are weak places in the paper. The eleetric spark in
the same way begins at the point where the clectric tension first
overcomes the insulation of the dielectric, and proceeds from that
point, in an apparently irregular path, so as to take in other weak
points, such as particles of dust floating in air.

On the Electric Force required to produce a Spark in Air.

In the experiments of Sir W. Thomson ¥ the clectromotive force
required to produce a spark across strata of air of various thiclk-
nesses was measured by means of an electrometer.

The sparks were made to pass between two surfaces, one of which
was plane, and the other only sufliciently convex to malke the sparks
occur always at the same place.

The difference of potential required to cause a spark to pass was
found to increase with the distance, but in a less rapid ratio, so that
the electric foree at any point hetween the surfaces, which is the
quotient of the difference of potential divided by the distance, can
be raised to a greater value without a discharge when the stratum
of air is thin.

When the strabum of air is very thin, say .00254 of a centimetre,
the resultant force required to produce a spark was found to be
527.7, in terms of centimétres and grammes.  This corresponds to
an electric tension of 11,29 grammes weight per square centimetre.

When the distance between the surfaces is about a millimetre
the clectrie force is about 130, and the clectrie tension .68 grammes
weight per square centimétre. It is probable that the value for

* Proe. B, N, 1860 or, Reprint, cliap. six,
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greater distances is not much less than this. The ordinary pressure
of the atmosphere is ahout 1032 grammes per square centimatre,

It is difticult to explain why a thin stratum of air should require
a greater force to produce a disruptive discharge across it than a
thicker stratum. Ts it possible that the air very near to the sur-
face of dense bodies is condensed, so as to hecome a better insu-
lator? or does the potential of an clectrified conductor differ from
that of the air in contact with it by a quantity baving a maximum
value just before discharge, so that the observed difference of
potential of the conductors is in every case greater than the dif-
ference of potentials on the two sides of the stratum of air by a
constant quantity equivalent to the addition of about .005 of an
inch to the thickness of the stratum ?  See Art. 370.

All these phenomena differ considerably in different gases, and in
the same gas at different densities. Some of the forms of electrical
discharge through rare gases are exceedingly remarkable. In some
cases there is a regular alternation of luminous and dark strata, so
that if the electricity, for example, is passing along a tube contain-
ing a very small quantity of gas, a number of luminous disks will
he scen arranged transversely at nearly equal intervals along the
axis of the tube and separated by dark strata. If the strength of
the carrent be increased a new disk will start into existence, and
it and the old disks will arrange themselves in closer order. In
a tube described by Mr. Gassiot* the light of each of the disks
is bluish on the negative and reddish on the positive side, and
bright red in the central stratum.

These, and many other phenomena of electrical discharge, are
exceedingly important, and when they are better understood they
will probably throw great light on the nature of clectricity as well
as on the nature of guses and of the medium pervading space. At
present, however, they must be considered as outside the domain of
the mathematical theory of electricity.

Electric. Phenomena of Tourmaline.

58.] Certain crystals of tourmaline, and of other minerals, possess
what may be called Electric Polarity. Suppose a crystal of tour-
maline to be at a uniform temperature, and apparvently free from
clectrification on its surfice. Let its temperature be now raised,
the crystal remaining insulated. One end will be found positively

* Intellcctual Oscrver, March, 1866.
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and the other end negatively electrified. Let the surface be de-
prived of this apparent clectrification by means of a flame or other-
wise, then if the crystal be made still hotter, clectrification of the
same kind as before will appear, but if the crystal be cooled the
end which was positive when the erystal was heated will become
negative,

These electrifications are observed at the extremities of the crys-
tallographic axis. Some crystals are terminated by a six-sided
pyramid at one end and by a three-sided pyramid at the other.
In these the end having the six-sided pyramid becomes positive
when the crystal is heated.

Sir W. Thomson supposes every portion of these and other hemi-
hedral erystals to bave a definite clectric polarity, the intensity
of which depends on the temperature. 'When the surface is passed
throngh a flame, every part of the surface becomes clectrified to
sich an cxtent as to exactly neutralize, for all external points,
the effect of the internal polarity. The erystal then has no ex-
ternal electrical action, nor any tendency to change its mode of
clectrification, But if it be heated or cooled the interior polariza-
tion of cach particle of the erystal is altered, and can no longer
be balanced by the superficial cleetrification, so that there is a
resultant external action.

Plan of this Treatise.

59.] In thefollowing treatise I propose first to explain the ordinary
theory of electrical action, which considers it as depending only
on the clectrified bodies and on their relative position, without
taking account of any phenomena which may take place in the
surrounding media. In this way we shall establish the law of the
inverse square, the theory of the potential, and the equations of
Laplace and Poisson. We shall next consider the charges and
potentials of a system of electrified conductors as connccted by
a system of equations, the coeflicients of which may be supposed
to be determined by experiment in those cases in which our present
mathematical methods are not applicable, and from these we shall
determine the mechanical forces acting between the different elec-
trified bodies.

We shall then investigate certain general theorems by which
Green, Gauss, and Thomson have indicated the conditions of so-
lution of problems in the distribution of electricity. One result
of these theorems is, that if Poisson’s equation is satisfied by any
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function, and if at the surface of every conductor the function
has the value of the potential of that conductor, then the fune-
tion expresses the actnal potential of the system at every point. We
also deduce a method of finding problems capable of exact solution.

In Thomson’s theorem, the total energy of the system is ex-
pressed in the form of the integral of a certain quantity extended
over the whole space between the electrified bodies, and also in
the form of an integral extended over the clectrified surfaces only.
The equation between these two expressions may be thus inter-
preted physically.  We may conceive the relation into which the
clectrified bodies are thrown, either as the result of the state of
the intervening medium, or as the result of a direet action between
the electrified bodies at a distance. If we adopt the latter con-
ception, we may determine the law of the action, hut we can go
no further in speculating on its eause. If, on the other hand,
we adopt the conception of action through a medium, we are led to
enquire info the nature of that action in each part of the medium.

Tt appears from the theorem, that if we are to look for the seat
of the clectric energy in the different parts of the diclectric me-
dinm, the amount of energy in any small part must depend on
the square of the intensity of the resultant clectromotive force at
that place multiplied by a coefficient called the specific inductive
capacity of the medium.

It is better, however, in considering the theory of dielectrics
in the most general point of view, to distinguish between the clec-
tromotive force at any point and the clectric polarization of the
medium at that point, since these directed quantities, though re-
lated to one unother, are not, in some solid substances, in the same
dircction. The most general expression for the electric energy of
the medium per unit of volume is half the product of the electro-
motive force and the clectric polarization multiplied by the cosine
of the angle between their directions.

In all fluid diclectries the electromotive force and the electric
polarization are in the same direction and in a constant ratio,

If we caleulate on this hypothesis the total energy residing
in the medinm, we shall find it equal to the cnergy due to the
clectrification of the conductors on the hypothesis of direct action
at a distance.  Hence the two hypotheses are mathematically equi- -
valent,

If we now procced to investigate the mechanical state of the
medium on the hypothesis that the mechanical action observed
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between electrified hodies is exerted through and by means of
the medium, as in the familiar instances of the action of one body
on another by means of the tension of a rope or the pressure of
a rod, we find that the medium must be in a state of mechanical
stress.

The nature of this stress is, as Faraday pointed out ¥, a tension
along the lines of force combined with an equal pressure in all
directions at right angles to these lines. The magnitude of these
stresses is proportional to the energy of the electrification, or, in
other words, to the square of the resultant electromotive foree mul-
tiplied by the specific inductive capacity of the medium,

This distribution of stress is the only one consistent with the
observed mechanieal action on the clectrified bodies, and also with
the observed equilibrium of the fluid dielectric which surrounds
them. I have therefore thought it a warrantable step in scientific
procedure to assume the actual existence of this state of stress, and
to follow the assumption into its consequences. TFinding the phrase
electric tension used in several vague senses, I have attempted to
confine it to what I conceive to have been in the mind of some
of those who have used it, namely, the state of stress in the
diclectric medium which causes motion of the electrificd bodics,
and leads, when continually augmented, to disruptive discharge.
Electric tension, in this sense, is a tension of exactly the same
kind, and measured in the same way, as the tension of a rope,
and the diclectric medium, which can support a certain tension
and no more, may he said to have a certain strength in exactly
the same sense as the rope is said to have a certain strength.
Thus, for example, Thomson has found that air at the ordinary
pressure and temperature can support an clectric tension of 9600
grains weight per square foot hefore a spark passes.

60.] From the hypothesis that electric action is not a dircct
action between bodies at a distance, but is exerted by means of
the medium between the bodies, we have deduced that this medium
must be in a state of stress, We have also ascertained the cha-
racter of the stress, and compared it with the stresses which may
occur in solid bodies. Along the lines of force there is tension,
and perpendicular to them there is pressure, the numerical mag-
nitude of these forces being equal, and cach proportional to the
square of the resultant force at the point. Having established
these results, we are prepared to take another step, and to form

* Ecp. Ies., serics xi. 1207,



60 ELECTROSTATIC PHENOMENA. [60.

an idea of the nature of the clectric polarization of the dielectric
medium.

An clementary portion of a hody may be said to be polarized
when it acquires equal and opposite properties on two opposite
sides. The idea of internal polarity may be studied to the greatest
advantage as exemplified in permanent magnets, and it will be
explained at greater length when we come to treat of magnetism.

The electric polarization of an clementary portion of a dielectric
is a forced state into which the medium is thrown by the action
of eleetromotive force, and which disappears when that force is
removed. We may conceive it to consist in what we may call
an eclectrical displacement, produced by the electromotive force.
When the electromotive force acts on a conducting medium it
produces a current through it, but if the medium is a non-con-
ductor or dieclectric, the current cannot flow through the medium,
but the electricity is displaced within the medium in the direction
of the electromotive force, the extent of this displacement de-
pending on the magnitude of the electromotive foree, so that if
the electromotive force increases or diminishes the electric displace-
ment increases and diminishes in the same ratio.

The amount of the displacement is measured by the quantity
of electricity which crosses unit of area, while the displacement
increases from zero to its actual amount. This, therefore, is the
measure of the electric polarization.

The analogy between the action of cleetromotive force in pro-
ducing electric displacement and of ordinary mechanical force in
producing the displacement of an elastic body is so obvious that
I have ventured to call the ratio of the electromotive force to the
corresponding electric displacement the coeflicient of electric elasticity
of the medium. This cocfficient is different in different media, and
varies inversely as the specific inductive capacity of each medium.

The variations of electric displacement evidently constitute electric
currents, These currents, however, can only exist during the
variation of the displacement, and therefore, since the displace-
ment cannot exceed a certain value without causing disruptive
discharge, they cannot be continued indefinitely in the same dirce-
tion, like the currents through conductors.

In tourmaline, and other pyro-clectric crystals, it is probable that
a state of electric polarization exists, which depends upon tem-
perature, and does not require an external electromotive force to
produce it If the interior of a body were in a state of permanent
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electric polarization, the outside would gradually become charged
in such a manner as to neutralize the action of the internal elec-
trification for all points outside the body. This external superficial
charge could not be detected by any of the ordinary tests, and
could not be removed by any of the ordinary methods for dis-
charging superficial electrification. The internal polarization of
the substance would therefore never be discovered unless by some
means, such as change of temperature, the amount of the internal
polarization could be increased or diminished. The external clec-
trification would then Le no longer capable of neutralizing the
external effect of the internal polarization, and an apparent elec-
trification would bhe observed, as in the case of tourmaline.

If a charge e is uniformly distribuled over the surface of a
sphere, the resultant force at any point of the medium surrounding
the sphere is numerically equal to the charge ¢ divided by the square
of the distance from the centre of the sphere. This resultant force,
according to our theory, is accompanied by a displacement of elec-
tricity in a direction outwards from the sphere.

If we now draw a concentric spherical surface of radius 7, the whole
displacement, %, through this surface will be proportional to the
resultant force multiplied by the area of the spherical surface. But
the resultant force is direetly as the charge e and inversely as the
square of the radius, while the area of the surface is directly as the
square of the radius.

Hence the whole displacement, %, is proportional to the charge ¢,
and is independent of the radius.

To determine the ratio between the charge ¢, and the quantity
of eleetricity, /%, displaced ontwards through the spherical surface,
let us consider the work done upon the medium in the region
between two concentric spherical surfaces, while the displacement
is increased from % to £+37Z. If ) and ¥, denote the potentials
at the inner and the outer of these surfaces respectively, the elec-
tromotive force by which the additional displacement is produced
is I1—7,, so that the work spent in augmenting the displacement
is (M—=V,)8F.

If we now make the inner surface coincide with that of the
electrified sphere, and make the radius of the other infinite, 7]
becomes 7, the potential of the sphere, and 7, hecomes zero, so
that the whole work done in the surrounding medium is 73 Z.

But by the ordinary theory, the work done in augmenting the
charge is /3¢, and if this is spent, as we suppose, in augmenting
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the displacement, 5% = 8¢, and since % and ¢ vanish together,
I = ¢, or—

The displacement onlwards through any spherical surface concentric
with the sphere is equal (o the charge on the sphere.

To fix our ideas of electric displacement, let us consider an accu-
mulator formed of two conducting plates £ and B, separated by a
stratum of a dicleetric C. Let 7 be a conducting wire joining
A and B, and let us suppose that by the action of an eleetromotive
force a quantity @ of positive electricity is transferred along the
wire from 7 to 4. The positive electrification of 4 and the
negative clectrifieation of B will produce a certain eleetromotive
force acting from 4 towards B in the diclectric stratum, and this
will produce an electric displacement from A towards B within the
diclectrie.  The amount of this displacement, as measured by the
quantity of electricity forced across an imaginary section of the
dielectric dividing it into two strata, will be, according to our
theory, exactly Q. See Arts. 75, 76, 111.

It appears, therefore, that at the same time that a quantity
Q of clectricity is being transferred along {he wire by the electro-
motive force from B towards 4, so as to cross every section of
the wire, the same quantity of clectricity crosses every section
of the dieleetric from o towards B by reason of the electric dis-
placement.

The reverse motions of electricity will take place during the
discharge of the accumulator. In the wire the discharge will be
Q from A to B, and in the dielectric the displacement will subside,
and a quantity of electricity @ will cross every section from B
towards 4.

LEvery case of electrification or discharge may therefore be con-
sidered as a motion in a closed circuit, such that at every section
of the circuit the same quantity of electricity crosses in the same
time, and this is the case, not only in the voltaic circuit where
it has always been recognised, but in those cases in which elec-
tricity has heen generally supposed to be accumulated in certain
places.

61.] We are thus led to a very remarkable consequence of the
theory which we are examining, namely, that the motions of elec-
tricity are like those of an incompressible fluid, so that the total
quantity within an imaginary fixed closed surface remains always
the same.  This result appears at first sight in direct contradiction
to the fact that we can charge a conductor and then introduce
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it into the closed space, and so alter the quantity of electricity
within that space. But we must remember that the ordinary theory
takes no account of the electric displacement in the substance of
diclectries which we have been investigating, but confines its
attention to the eleetrification at the bounding surfaces of the
conductors and dielectrics. In the casc of the charged conductor
Iet us suppose the eharge to he positive, then if the surrounding
dielectric extends on all sides beyond the closed surface there will be
clectrie polarization, accompanied with displacement from within
outwards all over the closed surface, and the surface-integral of
the displacement taken over the surface will be equal to the charge
on the conductor within.

Thus when the charged conductor is introduced into the closed
space there is immediately a displacement of a quantity of clec-
tricity equal to the charge through the swface from within out-
wards, and the whole quantity within the surface remains the
same.

The theory of electric polarization will be discussed at greater
length in Chapter V, and a mechanical illustration of it will be
given in Art. 334, but its importanee cannot be fully understood
till we arrive at the study of electromagnetic phenomena.

62.] The peenliar features of the theory as we have now de-
veloped them are :—

That the energy of clectrification resides in the dielectric medium,
whether that medium be solid, liquid, or gascous, dense or rare,
or even deprived of ordinary gross matter, provided it be still
capable of transmitting clectrical action.

That the energy in any part of the medium is stored up in
the form of a state of constraint called clectric polarization, the
amount of which depends on the resultant clectromotive force at
the place.

That electromotive foree acting on a diclectric produces what
we have called clectric displacement, the relation between the force
and the displacement being in the most general case of a kind
to be afterwards investigated in treating of conduction, but in
the most important cases the force is in the same direction as
the displacement, and is numerically equal to the displacement
multiplied by a quantity which we have called the coefficient of
electrie elasticity of the dielectric.

That the energy per unit of volume of the dieleetric arising from
the electric polarization is half the product of the electromotive
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force and the cleetric displacement multiplied, if necessary, by the
cosine of the angle between their directions.

That in fluid dielectrics the electric polarization is accompanied
by a tension in the direction of the lines of force combined with
an equal pressure in all directions at right angles to the lines
of foree, the amount of the tension or pressure per unit of area
being numerically equal to the energy per unit of volume at the
same place.

That the surfaces of any elementary portion into which we may
conceive the volnme of the diclectric divided must be conceived
to be clectrified, so that the surface-density at any point of the
surface is equal in magnitude to the displacement through that
point of the surface reckoned inwards, so that if the displacement
is in the positive direction, the surface of the element will be elee-
trificd negatively on the positive side and positively on the negative
side. These superficial clectrifications will in general destroy one
another when consccutive clements are considered, except where
the diclectric has an internal charge, or at the surface of the
diclectrie.

That whatever electricity may be, and whatever we may under-
stand by the movement of electricity, the phenomenon which we
have called electric displacement is a movement of electricity in the
same sense as the transference of a definite quantity of electricity
throngh a wire is a movement of eleetricity, the only difference
being that in the dicleetric there is a foree which we have called
clectric elasticity which acts against the electrie displacement, and
forces the electricity back when the electromotive foree is removed ;
whereas in the conducting wire the electric elasticity is continually
giving way, so that a current of true conduction is set up, and
the resistance depends, not on the total quantity of electricity dis-
placed from its position of equilibrium, but on the quantity which
crosses o section of the conductor in a given time.

That in every case the motion of electricity is subject to the
same condition as that of an incompressible fluid, namely, that
at every instant as much must flow out of any given closed space
as flows into it.

It follows {rom this that every electric current must form a
closed circuit.  The importance of this result will be seen when we
investigate the laws of electro-magnetism.

Since, as we have seen, the theory of direet action at a distance
is mathematically identical with that of action by means of a
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medinm, the actual phenomena may be explained by the one
theory as well as by the other, provided suitable hypotheses be
introduced when any difficulty oceurs. Thus, Mossotti has deduced
the mathematical theory of diclectries from the ordinary theory
of attraction by merely giving an clectric instead of a magnetic
interpretation to the symbols in the investigation by which Poisson
has deduced the theory of magnetic induction from the theory of
magnetic fluids. e assumes the existence within the dielectric of
small conducting clements, capable of having their opposite surfaces
oppositely electrificd by induction, but not capable of losing or
gaining electricity on the whole, owing to their being insulated
from cach other by a non-conducting medium. This theory of
diclectries is consistent with the laws of electricity, and may be
actually true, If it is true, the specific inductive capacity of a
dielectric may be greater, but cannot be less, than that of air or
vactum. No instaiice has yet been found of a dielectric having
an inductive capacity less than that of air, but if such should
be discovered, Mossotti’s theory must be abandoned, although his
formulae would all remain exact, and would only require us to alter
the sign of a coeflicient.

In the theory which I propose to develope, the mathematical
methods are founded upon the smallest possible amount of hypo-
thesis, and thus equations of the same form are found applicable to
plienomena which are certainly of quite different natures, as, for
instance, clectric induction through diclectrics ; conduction through
conductors, and magnetic induction. In all these cases the re-
lation between the foree and the effect produced is expressed by
a set of equations of the same kind, so that when a problem in
one of these subjects is solved, the problem and its solution may
be translated into the language of the other subjects and the
results in their new form will also be true.

VoL. T. F



CHAPTER II.

ELEMENTARY MATIIEMATICATL THEORY OF STATICAL

ELECTRICITY,

Definition of Bleclricity as a Mathematical Quantity.

63.] We have scen that the actions of elect rified hodies are such
that the electrification of one body may be equal to that of another,
or tu the sum of the clectrifications of two bodies, and that when
two bodies are equally and oppositely eleetrified they have no clec-
trical effect on external hodies when placed together within a closed
insulated conducting vessel.  We may express all these results in
a concise and consistent manner by describing an electrified body as
charged with a certain quantily of eleetricity, which we may denote
by e. When the electrificution is positive, that is, according to the
ususl convention, vitreous, ¢ will he a positive quantity. When the
clectrification is negative or resinous, ¢ will be negative, and the
quantity —e may be interpreted cither as a negative quantity of
vitreous eleetricity or as a positive quantity of resinous clectricity.

The effect of adding together two equal and opyposite charges of
electricity, ¢ and —¢, is to produce a state of no clectrification
expressed by zero.  We may therefore regard a body not electrified
as virtually charged with equal and opposite charges of indefinite
magnitude, and an electrified body as virtually charged with un-
equal quantities of positive and negative electricity, the algebraic
sum of these charges constituting the observed clectrification. Tt is
manifest, however, that this way of regarding an clectrified hody
is entirely artificial, and may be compared to the conception of the
velocity of a body as compounded of two or more different velo-
cities, no one of which is the actual velocity of the body. When
we speak therefore of a body being charged with a quantity e of
electricity we mean simply that the body is electrified, and that
the electrification is vitreous or resinous according as e is positive
or negative,

)
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64.] ELECTRIC DENSITY. 67

ON ELECTRIC DENSITY.

Distribution in Three Dimensions.

64.] Definition. The eleetrie volume-density at a given point
in space is the limiting ratio of the quantity of eleetricity within
a sphere whose centre is the given point to the volume of the
sphere, when its radius is diminished without limit.

We shall denote this ratio by the symbol p, which may be posi-
tive or negative.

Distribution on o Surfuce.

It is a result alike of theory and of experiment, that, in certain
cases, the clectrification of a body is entirely on the surface. The
density at a point on the surface, if defined acecording to the method
given above, would be infinite. We therefore adopt a different
method for the measurement of surface-density.

Definition. The electric density at a given point on a surface is
the limiting ratio of the quantity of ecleetricity within a sphere
whose centre is the given point to the area of the surface contained
within the sphere, when its radius is diminished without limit.

We shall denote the surface-density by the symbol a.

Those writers who supposed electricity to be a material fluid
or a collection of particles, were obliged in this case to suppose
the electricity distributed on the surface in the form of a stratum
of a certain thickness 0, its density being p,, or that value of p
which would result from the particles having the closest contact
of which they are capable. It is manifest that on this theory

Py 0 = o.
When o is negative, according to this theory, a certain stratum
of thickness 0 is left entirely devoid of positive electricity, and
filled entirely with negative electricity.

There is, however, no experimental evidence either of the elec-
tric stratum having any thickness, or of electricity being a fluid
or a collection of particles. We therefore prefer to do without the
symbol for the thickness of the stratum, and to use a special symbol
for surface-density.

Distribution alony a Line.
It is sometimes convenient to suppose electricity distributed
on a line, that is, a long narrow body of which we neglect the
¥2
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thickness. In this case we may define the line-density at any point
to he the limiting ratio of the clectricity on an element of the
line to the length of that element when {he clement is diminished
without limit,

If A denotes the line-density, then the whole quantity of elec-

tricity on a carve is ¢ = /)\ ds, where s is the clement of the curve,

Similarly, if o is the surface-density, the whole quantity of clee-

tricity on the surface s
= f [aas,

where «§ is the clement of surface.
If p is the volume-density at any point of space, then the whole
clectricity within a certain volume is

¢ = /[/p dadyd-,

where da dy dz is the element, of volume. The limits of integration
in each case are those of the curve, the surface, or the portion of
space considered.,

It is manifest that e, A, o and p are quantities differing in kind,
each being one dimension in space lower than the preceding, so that
if « be a line, the quantities ¢, aA, o, and a*p will be all of the
same kind, and if « Ve the unit of length, and A, o, p each the
unit of the different kinds of density, aA, a*a, and a®p will each
denote one unit of eleetricity.

Definition of the Unit of FEleclricity.

65.] Let 4 and B be two points the distance between which
is the unit of length.  Tiet two bodies, whose dimensions are small
compared with the distance AB, ho charged with equal quantities
of pasitive electricity and placed at A and B respeetively, and
let the charges be such that the force with which they repel each
other is the unit of foree, measured as in Art. 6. Then the charge
of either body is said 1o be the unit of clectricity.  If the charge of
the body at B were a unit of negative eleetricity, then, since the
action hetween the bodies would be reversed, we should have an
attraction equal to the unit of force,

If the charge of A were glso negative, and equal to unity, the
force would he repulsive, and equal to unity.

Since the action between any two portions of electricity is not
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68.] LAW OF ELECTRIC FORCE. 69

affected by the presence of other portions, the repulsion between
¢ units of clectricity at 4 and ¢ units at B is ¢¢’, the distance

ADB being unity. See Art. 39,

Luw of Force betiween Electrified Bodies.

66.] Coulomb shewed by experiment that the force Dhetween
cleetrified bodies whose dimensions are small compared with the
distance between them, varies inversely as the square of the dis-
tance. Hence the actual repulsion between two such bodies charged
with quantities ¢ and ¢ and placed at a distance » is

/
(44

7..2
We shall prove in Art. 74 that this law is the only one con-
sistent with the observed fact that a conductor, placed in the inside
of a closed hollow conductor and in contact with it, is deprived of
all clectrical charge. Our conviction of the accuracy of the law
of the inverse square of the distance may be considered to rest
on experiments of this kind, rather than on the direct measure-

ments of Coulomb.

Resultant Loree between Two Bodivs.

67.] In order to find the resultant force between two bodies
we might divide each of them into its elements of volume, and
consider the repulsion between the electricity in each of the elements
of the first hody and the electricity in each of the clements of the
second body. We should thus get a system of forces equal in
number to the product of the numbers of the elements into which
we have divided cach body, and we should have to combine the
effects of these forces by the rules of Staties. Thus, to find the
component in the direction of 2 we should have to find the value

of the sextuple integral

[ /ff [[ ool dudy dedrdy 0
ST =y 4 (g =g P 4 (=2

where 2, y, z are the coordinates of a point in the first body at
which the clectrieal density is p, and 27, o/, 2, and p’ arc the
corresponding quantities for the second body, and the integration
is extended first over the one body and then over the other,

]x’usul)/mzt Force at a Poind.
68.] In order to simplify the mathematical process, it is con-
venient to consider the action of an electrified body, not on another
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body of any form, but on an indefinitely small body, charged with
an indefinitely small amount of electricity, and Placed at any point
of the space to which the electrical action extends. By making
the charge of this body indefinitely small we render insensible its
disturbing action on the charge of the first bady.

Let ¢ be the charge of this body, and let the foree acting on
it when placed at the point (2, g, 2) be Re, and let the direction-
cosines of the force be /7, m, n, then we may call 2 the resultant
foree at the point (2, y, 2).

In speaking of the resultant electrical force at a point, we do not
neeessarily imply that any foree is actually exerted there, but only
that if an clectrified body were placed there it would be acted on
by a force Re, where ¢ is the charge of the body.

Definition.  The Resultant electrical force at any point is the
force which would be exerted on a small body charged with the unit
of positive electricity, if it were placed there without disturbing the
actual distribution of electricity,

This force not only tends to move an electrified body, but to
move the clectricity within the body, so that the positive electricity
tends to move in the dircetion of 22 and the negative electricity
in the opposite direction. Ience the force 2 is also called the
Electromotive Foree at ¢he point (r, Iy ).

When we wish to express the fact that the resultant foree is a
veetor, we shall denote it by the German letter €. If the body
is a diclectric, then, according to the theory adopted in this
treatise, the electricity is displaced within it, so that the quantity
of clectricity which is forced in the divection of & across unit
of area fixed perpendicular to € is

9= Ke;
dm
where ® is the displacement, & the resultant force, and K the
specific induetive capacity of the dielectric.  For air, K =1,
If the body is & conductor, the state of constraint is continually

giving way, so that a current of conduction is produced and main-
tained as long as the force @ acts on the medium.

Components of the Resullant Force,
If X, ¥, 7 denote the components of 2, then
X = RZ, Y = ]Em, Z = Rn;

where Z, m, 2 are the direction-cosines of &.
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Line-Integral of Electric Force, or FElectromotive Force alony
an Are of a Curve.
69.] The Electromotive force along a given arc AP of a curve is
numerically measured by the work which would be done on a unit
of positive clectricity carried along the curve from the beginning,

4, 1o P, the end of the are.

If s is the Tength of the are, measured from 4, and if the re-
sultant force 2 at any point of the curve makes an angle € with
the tangent drawn in the positive direction, then the work done
on unit of clectricity in moving along the element of the curve

ds will be I cos e ds,

and the total electromotive force 7 will be
= /’.Rcos eds,
]

the integration being extended from the beginning to the end
of the are.
If we make use of the components of the force R, we find
- s de oy 02
) =~£ (,\. 7/—3'--'*-'1— +d—('["'s—)(]3.

ds
If X, ¥, and Z are such that X de+ Ydy+Zdz is a complete

differential of a function of =, y, ¢, then

I)
F= [ (Nde+ Ydy+Zde) = Ta—Tr;

JA
where the integration is performed in any way from the point 4
to the point P, whether along the given curve or along any other
line between 4 and P.

In this case ¥ is a scalar fanction of the position of a point in
space, that is, when we know the coordinates of the point, the value
of ¥ is dcterminate, and this value is independent of the position
and direction of the axcs of reference. See Art. 16.

On Functions of the Position of a Point.

In what follows, when we deseribe a quantity as a function of
the position of a point, we mean that for every position of the point
the function has a determinate value. We do not imply that this
value can always be expressed by the same formula for all points of
space, for it may be expressed by one formula on one side of a
given surface and by another formula on the other side.
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On Potential Functions.

70.] The quantity Xde+Ydy+Zd: is an exact differential
whenever the force arises from attractions or repulsions whose in-
tensity is a function of the distance only from any number of
points.  For if 7 he the distance of one of the points from the point
(% > 2), and if £ be the repulsion, then

Xo=mi=1
with similar expressions for ¥, and Z,, so that
X do Yidy+Z d: = R, dr, ;
and since 7, is a fanction of r, only, 2 dr  is an exact differential
of some function of 7, say 77,
Similarly for any other force R,, acting from a centre at dis-
tance »,,
Xyde+ Y,dy+Zyde = R, dr, = d v,.
But X' = X, + X, +&ec. and ¥ and Z are compounded in the same
way, therefore
Xdet Ydy+Zdz = dT, + T, + &e. = i,

F, the integral of this quantity, under the condition that ¥ = 0
at an infinite distance, is called the Potential Function,

The use of this function in the theory of attractions was intro-
duced by Laplace in the caleulation of the attraction of the earth,
Green, in his essay ¢ On the Application of Mathematical Analysis
to Electricity,” gave it the name of the Potential Function. Gauss,
working independently of Green, also used the word Potential,
Clausius and others have applied the term Potential to the work
which would be done if two bodies or systems were removed to
an infinite distunce from one another, We shall follow the use of
the word in recent English works, and avoid ambiguity by adopting
the following definition due to Sir W. Thomson.

Definition of Potential. The Potential at a Point is the work
which would be done on a unit of positive electricity by the elec-
tric forces if it were placed at that point without disturbing the
cleetric distribution, and carried from that point to an infinite
distance.

71.] Expressions for the Resultant Force and its components in
terms of the Potential,

Since the total clectromotive force along any are .{B is

A—Ilh
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if we put ds for the arc 4B we shall have for the force resolved

in the direction of ds,
ar

ds’

whence, by assuming ds parallel to each of the axes in succession,

Rcose =

wegeh L ar o, _ar.
=T’ =T dy’ T di’

ITE AT TR\

r= (Gl + g + 7 )

We shall denote the force itself, whose magnitude is Zand whose
components are X, ¥, 7Z, by the German letter €, as in Arts, 17
and 68.

The Potential al all Points within a Conductor is lhe same.

72.] A conductor is a hody which allows the clectricity within
it to move from one part of the body to any other when acted on
by clectromotive force. When the cleetricity is in equilibrium
there can be no elcctromotive force acting within the conductor.
Hence 1 = 0 throughout the whole space occupied by the con-

ductor. T'rom this it follows that
(EZ —o av o av

= 0, — = 0, —— =0
dz dy dz
and therefore for every point of the conductor
V=,

where C is a constant quantity.

Potential of a Conductor.

Since the potential at all points within the substance of the
conductor is C, the quantity C is called the Potential of the con-
ductor. C may be defined as the work which must be done by
external agency in order to bring a unit of electricity from an
infinite distance to the conductor, the distribution of electricity
being supposed not to be disturbed by the presence of the unit.

If two conductors have equal potentials, and are connected by
a wire so fine that the clectricity on the wire itself may be neg-
lected, the total electromotive force along the wire will be zero,
and no electricity will pass from the one conductor to the other.

If the potentials of the conductors 4 and B be ¥, and Fp, then
the clectromotive force along any wire joining . and B will be

Fa=Tn
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in the direction 4B, that is, positive clectricity will tend to pass
from the conductor of higher potential to the other.

Potential, in cleetrical science, has the same relation to Elec-
{ricity that Pressure, in Hydrostatics, has to I'lid, or that Tem-
perature, in Thermodynamics, has to Ileat. Electricity, Fluids,
and IHeat all tend to pass from one place to another, if the Poten-
tial, Pressure, or Temperature is greater in the first place than in
the second. A fluid is certainly a substance, heat is as certainly
not a substance, so that though we may find assistance from ana-
logies of this kind in forming clear ideas of formal electrical rela-
tions, we must be careful not to let the one or the other analogy
snggest to us that electricity is either a substance like water, or
a state of agitation like heat.

Potential due to any Electrical System.

78.] Let there be a single electrified point charged with a quantity
¢ of electricity, and let » he the distance of the point &', 7', # from it,

then 7—=/ Rdr :f -%(7;': ‘.
Jy . 7 7

Let there be any number of clectrified points whose coordinates
are (21, /1, 21), (2 Jar ), &e. and their charges e, e,, &c., and
let their distances from the point (27,7, 7y be 7, 7,, &c., then the
potential of the system at 2/, 5/, # will be

r=s()

Let the electric density at any point (2, y, z) within an elec-
trified body be p, then the potential due to the body is

]'=y[/f§f dedydz;

where r={(@—2a") +(y—y )2+ (s =)},
the integration heing extended throughout the body.

On the Proof of the Law of the Inverse Square.

74.] The fact that the force between clectrified bodies is inversely
as the square of the distance may be considered to be established
by direct experiments with the torsion-halance. The results, how-
cver, which we derive from such experiments must be regarded
as affected by an error depending on the probable error of each
experiment, and unless the skill of the operator be very great,
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the probable error of an experiment with the torsion-balance is
considerable. As an argumnent that the attraction is really, and
not merely as a rough approximation, inversely as the square of the
distance, Experiment VII (. 34) is far more conclusive than any
measurements of clectrical forees can be.

In that experiment a conductor B, charged in any manner, was
enclosed in a hollow conducting vesscl €, which completely sur-
rounded it. €' was also electrified in any manner.

B was then placed in electric communication with €, and was then
again insulated and removed from ¢ without touching it, and ex-
amined by means of an clectroscope. In this way it was shewn
that a conductor, if made to touch the inside of a conducting vessel
which completely encloses it, becomes completely discharged, so
that no trace of cleetrification can be discovered by the most
delicate clectrometer, however strongly the conductor or the vessel
has Deen previously electrified.

The methods of detecting the electrification of a body are so
delicate that a millionth part of the original electrification of B
could be observed if it existed. No experiments involving the direct
measurement of forces can be brought to such a degree of accuracy.

It follows from this experiment that a non-electrified body in the
inside of a hollow conductor is at the same potential as the hollow
conductor, in whatever way that conductor is charged. Ior if it
were not at the same potential, then, if it were put in electric
connexion with the vessel, either by touching it or by means of
a wire, cleetricity would pass from the one body to the other, and
the conductor, when removed from the vessel, would he found to be
electrified positively or negatively, which, as we have already stated,
is not the case.

Hence the whole space inside a hollow conductor is at the same
potential as the conductor if no electrified body is placed within it.
If the law of the inverse square is true, this will be the case what-
ever be the form of the hollow conductor. Our object at present,
however, is to ascertain from this fuct the form of the law of
attraction.

Tor this purpose let us suppose the hollow conductor to be a thin
spherical shell. Since everything is symmetrical about its centre,
the shell will be uniformly electrified at every point, and we have
to enquire what must be the law of attraction of a uniform spherical
shell, so as to fulfil the condition that the potential at every point
within it shall be the same.
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Let the force at a distance » from a point at which a quantity e
of electricity is concentrated be 2, where 2 is some function of .
All central forces which are functions of the distance admit of a

potential, let us write -CQ—) for the potential function due to a unit

of electricity at a distance r.

Let the radius of the spherical shell be «, and let the surface-
density be ¢. Let P be any point within the shell at a distance
2 from the centre. Take the radius through P as the axis of
spherical coordinates, and let » be the distance from P to an element
S of the shell. Then the potential at P is

r=[fe s,

V= / "f:rr AY) a®sin 0 46 d¢.
Jo 0 r

Now 72 = a2 —2apcos b+ p2,
7dr = apsin 0 d0.
a [etp
Hence V=2=2naog-- S dr;
_[) a=p

and 7 must be constant for all values of p less than .
Multiplying both sides by p and differentiating with respeet to p,
V=2nca{f(e+p)+/ (@—p)}
Differentiating again with respect to p,
0 =/"(@+p)—f" (e—p).
Since @ and p are independent,
J'(#) = C, a constant,

Hence 7 = Cr4C,
and the potential function is
/_‘.(_7_) =C+ 9_ .
r 7

The foree at distance 7 is got by differentiating this expression
with respect to », and changing the sign, so that
R = 2,
o
or the force is inversely as the square of the distance, and this
therefore is the only law of force which satisfies the condition that
the potential within a uniform spherical shell is constant*. Now

* Nee Pratt's Mechanical Philosophy, p. 144.
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this condition is shewn to be fulfilled by the electric forces with
the most perfect accuracy. Hence the law of electric force is

ve it o a corresponding degree of accuracy.

Surface-Integral of® Electric Induction, and Electric Displacement

through a Surface.

75.] Let B be the resultant force at any point of the surface,
and e the angle which R makes with the normal drawn towards the
positive side of the surface, then 7 cos ¢ is the component of the
force normal to the surface, and if 48§ is the clement of the surface,
the electric displacement throngh @8 will be, by Art. 68,

1 ...
-~ KR coseds.
4T

Since we do not at present consider any dielectric except air, K=1.

We may, however, avoid introducing at this stage the theory of
clectric displacement, by calling % cos € &S the Induction through
the element @8. This quantity is well known in mathematicai
physies, but the name of induction is borrowed from Faraday.
The surface-integral of induction is

f Ll cos € 8,

and it appears by Art. 21, that if X, ¥, Z arc the components of Z,
and if these quantities are continuous within a region bounded by a
closed surface S, the induction reckoned from within outwards is

dX dY dzy
f»[(Rcose(ZS =./'./:/;(i1.1: + i + 0 dw dy dz,

the integration being extended through the whole space within the
surface.

Induction through a Iinite Closed Surface due to a Single Centre
of Force.
76.] Let a quantity e of electricity be supposed to be placed at a
point O, and let » be the distance of any point P from 0, the force

at that pointis £ = 7—1- in the direction OP.

Let a line be drawn from O in any direction to an infinite
distance. If O is without the closed surface this line will either
not cut the surface at all, or it will issue from the surface as many
times as it enters. If O is within the surface the line must first
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issue from the surface, and then it may enter and issue any number
of times alternately, ending by issuing from it.

Let € be the angle between O and the normal to the surface
drawn outwards where OF cuts it, then where the line issues from
the surface cose will be positive, and where it enters cos e will
be negative.

Now let a sphere be deseribed with eentre O and radius unity,
and let the line OPF describe a conieal surfuce of small angular
aperture about O as vertex.

This cone will cut off a small element dw from the surface of the
sphere, and small elements d5,, dS,, &e. from the closed surface at
the various places where the line O interseets it.

Then, since any one of these clements 8 intersects the cone at a
distance » from the vertex and at an obliquity e,

A8 = r* secedw;
and, sinee R = er~*, we shall have
ReosedS = + edw;
the positive sign being taken when 7 issucs from the surface, and
the negative where it enters it.

If the point O is without the closed surface, the positive values
are equal in number to the negative ones, so that for any direction
of », SHcosedS =0,

and therefore /f]a’ cosedS = 0,

the integration being extended over the whole closed surface.

If the point O is within the closed surface the radius vector OP
first issues from the closed surface, giving a positive value of ¢ dw,
and then has an equal number of entrances and issues, so that in
this case SReosedS =cdo.

Extending the integration over the whole closed surface, we shall
include the whole of the spherieal surface, the area of which is 4,

so that
//Iﬂcosst: e[[dw = 1me.

Hence we conclude that the total induction outwards through a
closed surface due to a centre of force e placed at a point O is
zero when O is without the surface, and 4#¢ when O i1s within
the surface.

Since in air the displacement is equal to the induction divided

T
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by 4m, the displacement through a closed surface, reckoned out-
wards, is equal to the eleetricity within the surface.

Corollary. 1t also follows that if the surface is not closed but
is bounded by a given closed curve, the total induction through
it is we, where w is the solid angle subtended by the closed curve
at 0. This quantity, therefore, depends only on the closed curve,
and not on the form of the surface of which it is the houndary.

On the Equations of' Laplace and Poisson.

77.] Since the value of the total induction of a single centre
of force through a closed surface depends only on whether the
centre is within the surface or not, and does not depend on its
position in any other way, if there are a number of such centres
ey, £y, &c. within the surface, and e, ¢/, &e. without the surface,

we shall have
/f]ﬁcose([S = {me;

where e denotes the algebraical sum of the quantities of clee-
tricity at all the eentres of force within the closed surface, that is,
the total electricity within the surface, resinous eclectricity being
reckoned negative.

If the electricity is so distributed within the surface that the
density is nowbere infinite, we shall have by Art. 64,

ime = 47:[/ pdedydz,
and by Art, 75,
w/ f ReosedS =./~/~/ (:,/j + ((//;— + (([/:f/f) dedy dz.
If we take as the closed surface that of the element of volume
du dy dz, we shall have, by cquating these expressions,
dX Y 4z

do T dy Ty = A0

and if a potential 7 exists, we find by Art. 71,

a2V dAV drV

TiZ +—/? +-(7z—5 +4mp = 0.
This equation, in the case in which the density is zero, is called
Laplace’s Equation. In its more general form it was first given by
Poisson. It enables us, when we know the potential at every point,
to determine the distribution of electricity.,
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We shall denote, as at Art. 26, the quantity

BY &V BTy
dee T dy® g YTV
and we may ecxpress Poisson’s equation in words By saying that
the clectric density multiplied by 47 is the concentration of the
potential, Where there is no electrification, the potential has no
concentration, and this is the interpretation of Laplace’s equation.
If we suppose that in the superficial and lincar distributions of
clectricity the volume-density p remains finite, and that the clee-
tricity exists in the form of a thin stratum or narrow fibre, then,
by increasing p and diminishing the depth of the stratum or the
seetion of the fibre, we may approach the limit of true superficial
or linear distribution, and the equation being true throughout the
process will remain true at the limit, if interpreted in accordance
with the actual circumstances.

On the Conditions Lo be fulfilled at an Electrified Supface.

78.] We shall consider the electrified surface as the limit to
which an electrified stratum of density p and thickness » approaches
when p is increased and » diminished without limit, the product pv
being always finite and equal to ¢ the surface-density.

Let the stratum be that included between the surfaces

Fla,g,5) = F=a (1)
and I'=a+4. (2)

s dve
= - S s 3

d| + r/y! + dz’ ®

o

If we put n

and if Z, m, n are the direction-cosines of the normal to the surface,
pi=2,  mu=",  Ru="" (4)
du dy dz

Now let 7] e the value of the potential on the negative side
of the surface F'= a, 77 its value between the surfaces /7 = a and
F = a+h, and F, its value on the ypositive side of F = a-+ 4

Also, let p,_ g, and p, be the values of the density in these three
portions of space. Then, since the density is everywhere finite,
the sccond derivatives of F are everywhere finite, and the first
derivatives, and also the function itslf, are everywhere continuous
and finite.

At any point of the surfuce F'= « let a normal be drawn of
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length p, till it meets the surface # = « +4, then the value of 7 at
the extremity of the normal is

ar (ZI’ (?I’
a+u(l7/; + Mt )+&c, (5)
or o4-h = a+uR+&c. (6)
The value of 7 at the same point is
(ZV (ZV’ ar’
v, _V+u(l /J + 0 )+&e., (7)
b dv’
or Vo Vi = 3 - + e (8)

Since the first derivatives of 7 continue always finite, the second
side of the equation vanishes when £ is diminished without limit,
and therefore if 7, and 7} denote the values of 7 on the outside
and inside of an clectrified surface at the point 2, 7, 2,

Fi =7, (9)

If 2+dr, y+dy, z+dz be the coordinates of another point on
the clectrified surface, F=a and 7,=V, at this point also; whence

ar dF dF
=~4—-¢l.z:+ T{Iy+ %—dz+&c., (10)

dr, dF, av, dv, (l V av.
0= (= )+ (=3, )+ SV dz+&e; (1)

and when dz, dy, dz vanish, we find the condltmns
v, dn

da dz =Cl,

@ _n = Cn, (12)
dy dy

vy, _ar, _

Wz dz =On,

where C is a quantity to be determined.
. > v
Next, let us consider the variation of F and I;[—a; along the

ordinate parallel to z hetween the surﬁces F=uaand F=u+h.
Wel .,

¢ have F=ua+ 7 5 e ;(17‘) +&e., (13)
av  davy,  d*V’
= &t @t
Hence, at the second surface, where F'=a + %, and V" becomes Vg,

av, dvy  axv’
ahg _ 4/ 77 5
de dw T do+ &t ; (16)

VOL, L. G
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and do+4 (%?- (dz)? + &e. (14)
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27

whence ’(/1}2— dr+&e. = C/, (] 6)

by the first of equations (12).
Multiplying by &/, and remembering that, at the second surface

Ride =1 (17)

we find (—({;Z’ = CRI2. (18)
Similarly ”(/,’_ h= CRn?; (19)
and il?;;:/t = CRuo (20)
Adding ((—]{'/ZZ; (;}3—, + %I_,:)/L = ClH; (21)
but (](—Z; !]l;;j, + %—/ =—d7p and k=vlR; (22)
hence C=—dmpv = —dro, (23)

where o is the swface-density; or, multiplying the equations
(12) by /7, m, n respectively, and adding,
dl, dF, drv, dF, AV, AT,
,(;h; — —{751 m 7f - -@3)+n (7/?- - -(73—’)4-477“ = 0. (24)
This equation is called the characteristio equation of T~ at a surface.
This equation may also be written
arvy —dv,
m-{-a-{—’lﬂ'n’:o; (25)
where vy, v, are the normals to the surface drawn towards the
first and the second medium respectively, and ¥y, ¥, the potentials
at points on these normals.  We may also write it

Rycos e+ I cos ey +dme = 0 (26)
where R, R, arc the resultant forces, and €, € the angles which
they make with the normals drawn fom the surface on cither
side.

79.] Let us next determine the total mechanical foree acting on
an clement of the electrified surface.

The general expression for the foree parallel to & on an element
whose volume is da dy dz, and volume-density p, is

dX = — (/{/:p dxdy dz. (27)
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80.]  FORCE ACTING ON AN ELECTRIFIED SURFACE. 33

In the present case we have for any point on the normal »

ar _dry Ty
T = e (29
also, if the element of surface is /.5, that of the volume of the
element of the stratum may be written d8dv; and if X is the whole

force on a stratum of thickness v,

/f/ ((” (] ]: +&c)p dSdp. (29)

Integrating with respeet to v, we ﬁnd
X=- [[i O+ Sy 60
11772 av, 2T
= e TV e
7
,\:_ffg Y GO (32)

When v is diminished and p” iner eased without limit, the product
p'v remaining always constant and equal to o, the expression for
the foree in the direction of & on the electricity o @S on the element
of surface /8 is _ dly (]];

A—.-—-(T(]S‘&( praked
that is, the force acting on the clectrified element o 7§ in any given
direction is the arithmetic mean of the forces acting on equal
quantities of electricity placed one just inside the surface and the
other just outside the surface close to the actual position of the
element, and therefore the resultant mechantceal force on the clee-
trified clement is equal to the resultant of the forces which would
act on two portions of clectricity, cach equal to half that on the
element, and placed one on each side of the surface and infinitely
near to it.

80.] When a conductor is in eleclrical equilibrinm, the whole of the
electricity is on the surfuce.

We have already shewn that throughout the substance of the
conductor the potentinl 7 is constant. IHence g% is zero, and
therefore by Poisson’s equation, p is zero throughout the substance
of the conductor, and there can he no electricity in the interior
of the conductor.

Hence a superficial distribution of electricity is the only possible
one in the case of conductors in equilibrium. A distribution
throughout the mass can only ¢xist in equilibrium when the hody
is a non-conductor,

or, since + &e. ; (31)

(33)

G2
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Since the resultant force within a conductor is zero, the resultant
force just outside the conduetor is along the normal and is equal to
1w o, acting outwards from the conductor.,

8L.] I we now suppose an elongaied body to he clectrified, we
may, by diminishing its lateral dimensions, arrive at the conception
of an electrified line.

Let os be the length of a small portion of the clongated body,
and let ¢ be its cireumference, and o the superficial density of the
electricity on its surface; then, if A is the clectricity per unit of
length, A = co, and the resultant clectrical force close to the
surface will be A
170 = 47 .

¢

If, while A remains finite, ¢ he diminished indefinitely, the force
at the surface will be inereased indefinitely.  Now in every di-
electric there is a limit heyond which the force cannot be inereased
without a disruptive discharge.  Hence a distribution of clectricity
in which a finite quantity is placed on a finite portion of a line
1s nconsistent with the conditions existing in nature,

Even if an insulator could be found such that no discharge could
be driven through it by an infinite force, it would be impossible
to charge a linear conductor with a finite quantity of electricity,
for an infinite electromgtive force would be required to bring the
electricity to the linear conductor.

In the same way it may be shewn that a point charged with
a finite quantity of electricity cannot exist in nature. It is con-
venient, however, in certain cases, to speak of clectrified lines and
points, and we may suppose these represented by electrified wires,
and by small hodies of which the dimensions are negligible com-
pared with the principal distances concerned.

Since the quantity of clectricity on any given portion of a wire
diminishes indefinitcly when the diameter of the wire is indefinitely
diminished, the distribution of electricity on bodies of considerable
dimensions will not he sensibly affocted by the introduction of very
fine metallic wires into the field, so as to form electrical connexions
between these bodies and the carth, an electrical machine, or an
eleetrometer,

On Lines of” Force,

82.] It a line be drawn whose direction at every point of jts
course coincides with that of the resultant force at that point, the
line is called a Line of Force.
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If lines of force be drawn from every point of a line they will
form a surface such that the force at any point is parallel to the
tangent plane at that point. The surface-integral of the force with
respeet to this surface or any part of it will therefore be zero.

If lines of foree are drawn from every point of a closed curve I,
they will form a tubular surface §,. Let the surface §,, bounded
by the closed curve Z;, be a section of this tube, and let S, be any
other section of the tube. Let @4, @,, @, be the surface-integrals
over 5, §,, §,, then, since the three surfaces completely enclose a
space in which there is no attracting matter, we have

Q+ G+ @, =0

But Q,= 0, therefore @, =—@,, or the surface-integral over
the second section is equal and opposite to that over the first: but
since the directions of the normal are opposite in the two cases, we
may say that the surfacc-integrals of the two scetions are equal, the
direction of the line of force being supposed positive in both,

Such a tube 1s called a Solenoid ¥, and such a distribution of
force is called a Solenoidal distribution. The velocities of an in-
compressible fluid are distributed in this manner.

If we suppose any surface divided into elementary portions such
that the surface-integral of each clement is unity, and if solenoids
are drawn through the field of force having these clements for their
bases, then the surface-integral for any other surface will he re-
presented by the number of solenoids which it cuts. It is in this
sense that Faraday uses his coneeption of lines of force {o indicate
not only the direction but the amount of the force at any place in
the field.

We have used the phrase Lines of Force because it has heen used
by Faraday and others. In strictness, however, these lines should
be ealled Lines of Eleetrie Induction.

In the ordinary cases the lines of induction indicate the direction
and magnitude of the resultant electromotive force at every point,
becanse the force and the induction are in the same direction and
in a constant ratio. There are other cases, however, in which it
is important to remember that these lines indicate the induction,
and that the force is indicated by the equipotential surfaces, being
normal to these surfaces and inversely proportional to the distances
of consecutive surfaces.

* From gwiy, » tube. Faraday uses (3271) the term “Sphondyloid® in the same
sense,
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On Specific Inductive Cupacity.

83.] In the preceding investigation of surface-integrals 1 have
adopted the ordinary coneeption of direct action ai a distance,
and have not taken into consideration any effeets depending on the
nature of the dielectric medium in which the forces are observed,

But Iaraday has observed that the quantity of clectricity
induced by a given electromotive force on the surface of a conduetor
which bounds a dieleetric is not the same for all diclectries, The
induced electricity is greater for most solid and liquid dielectrics
than for air and gases. Hence these bodies are said to have
greater specific inductive capacity than air, which is the standard
medium.

We may express the theory of Faraday in mathematical language
by saying that in a dielectric medium the induction across any
surface is the product of the normal electric force into the coeflicient
of pecific inductive eapacity of that medium. If we denote this
coeflicient by A, then in every part of the investigation of sur-
face-integrals we must multiply X, ¥, and Z by K, so that the
equation of Poisson will become

d ,(U’+ d Al d K(U’ tmp = 0
do " de Tyt Ny T gy TATe= 0.

At the surface of separation of two media whose inductive capa-
citics are A} and K,, and in which the potentials are /) and /),
the characteristic equation may be written

AV, dl
K, R

{

o +lno =0,
where v is the normal drawn from the first medium to the second,
and o is the true surface-density on the surfice of separation ;
that is to say, the quantity of electricity which is actually on the
surface in the form of a charge, and which ean be altered only by
conveying electricity to or from the spot. This true clectrification
must he distinguished from the apparent. electrification o’, which is
the clectrification as dedneed from the electrical forees in the neigh-
bourhood of the surface, using the ordinary characteristic equation
f}]/{uz - ((/llul +ima’= 0.

If a solid diclectric of any form is a perfeet insulator, and if
its surface reecives no charge, then the true eleetrification remajns
zero, whatever be the cleetrieal forees acting on it,
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dl, K, dF, K,— K, dF,
Henee = 7\——1 7[;-, and ——‘—K 2 —(/; +4mo’= 0,
dl'y _ and'k, dF, Amd’K;

dv ~ K=K,  dv T K=K’

The surface-density o is that of the apparent electrification
produced at the surface of the solid dieleetriec by induction, It
disappears entirely when the inducing force is removed, but if
during the action of the inducing force the apparent electrification
of the surface is discharged by passing a flame over the surface,
then, when the inducing force is taken away, there will appear an
clectrification opposite to o %,

In a heterogencous diclectrie in which A varies continuously, if
¢ be the apparent volume-density,

A2V dEV Y ,
. e o Flap = 0.
s dy* dz
Comparing this with the equation above, we find
An(p—Kp) + dK rU’_}_ dK ’Uf/—_,_ dK rlzfz 0
de dv ' ody dy o odz d=
The true electrification, indicated by p, in the dielectric whose
variable inductive capacity is denoted by K, will produce the same
potential at every point as the apparent electrification, indieated by
o', would produce in a dielectric whose inductive capacity is every-
where equal to unity.

* Sce Faraday's *Remarks on Static Induction,’ Proceedings of the Royal In-
slitution, Feb, 12,1858
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SYSTEMS OF CONDUCTORS,

On the Superposition of Electrical Systems.

84.] Let %, be a given electrified system of which the potential
at a point £ is 7}, and let 7, be another electrified system of which
the potential at the same point would be 7, if , did not exist.
Then, if %, and E, exist together, the potential of the combined
system will be 7,4 71,

Hence, if 7 be the potential of an electrified system /% if the
clectrifieation of every part of % be increased in the ratio of # to 1,
the potential of the new system 2 2 will he o 7,

Linergy of an Electrified System.

85.] Let the system Dbe divided into parts, 4,, A,, &ec. so small
that the potential in each part may be considered constant through-
out its extent. Let ¢, e, &c. be the quantities of electricity in
cach of these parts, and 1ot Fiy Vo &e. be their potentials,

If now ¢, is altered to ney, & to ney, &c., then the potentials will
beecome 27, nF,, &e.

Let us consider the effect of changing 2 into # 4 dn in all these
expressions. It will be equivalent to charging 4, with 3 quantity
of eleetricity ¢, dn, A, with e,dn, &e. These charges must be sup-
posed 1o be brought from a distance at which the electrical action
of the system is insensible, The work done in bringing e du of
clectricity to A, , whose potential hefore the charge is » 7y, and after
the charge (14 @n) 7;, must lie between

nFie;dn  and (n+dn) 7, e, dn.
In the limit we may neglect the square of «a, and write the

expression I'yeyuwdn,
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86.] COEFFICIENTS OF POTENTIAL AND OF INDUCTION. 89

Similarly the work required to increase the charge of A, is
V,e,ndn, so that the whole work done in increasing the charge
of the system is

(Viey+ V,e,+&c)ndn.

If we suppose this process repeated an indefinitely great number
of times, each charge being indefinitely small, till the total effect
becomes sensible, the work done will he

E(Ve)fnfln =} S(Ve)(m2—n2);

wherce = (7¢) means the sum of all the products of the potential of
cach element into the quantity of clectricity in that element when
n = 1, and 7, is the initial and », the final value of 2.

If we make 2, == 0 and 2, = 1, we find for the work required to
charge an unelectrified system so that the electricity is e and the
polential 7 in cach element,

Q@ =13(Ve).

General Theory of a System of Conductors.

86.] Let 4, 4,,... 4, be any number of conductors of any
form. Let the charge or total quantity of electricity on each of
these be Z), Z,, ... I,, and let their potentials he 7, 7, ... F,
respectively.

Let us suppose the conductors to be all insulated and originally
free of charge, and at potential zero.

Now let 4, be charged with unit of electricity, the other bodics
being without charge. The effeet of this charge on 4, will be to
raise the potential of 4, to p,, that of 4, to py,, and that of 4, to
21w Where pyy, &e. are quantities depending on the form and rela-
tive position of the conductors. The quantity p,, may be called the
Potential Coefficient of 4, on itself, and p;, may he called the Po-
tential Coeflicient of 4, on 4,, and so on.

If the charge upon 4, is now made Z,, then, by the principle of
superposition, we shall have

Vi=pudy...... Va=moFy.

Now let 4, be discharged, and 4, charged with unit of electricity,
and let the potentials of 4,, 4,,... 4, be py, pos, ... Py, then the
potentials due to Z, on 4, will be

Pi=p,E,.... V.= pon ks,
Similarly let us denote the potential of 4, due to a unit charge
on 4, by p,,, and let us call p,, the Potential Coefficient of 4, on 4,,
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then we shall have the following cquations determining the po-
tentials in terms of the charges
Pi=mEy o+ po b 4 oy B,
R=pady ot pu by o4 p, I, (1)
L=ty oo+ po By .+ poE,.
We have here 2 linear equations containing 2? coeflicients of
potential.

87.] By solving these equations for Ey s F,, &e. we should obtain
n equations of the form

L= Hqk o+l

ki, = grll—l . '+(/rn/;"' + Qrul;;i

an = ’[nlrl; e +/_[n,1’,‘... + (1,,,,7;:.
The eocflicients in ‘these equations may be obfained directly from
those in the former equations. They may be called Cocflicients of
Induction.

Of these ¢, is numerically equal to the quantity of electricity
on 4, when 4, is at potential unify and all the other hodies are
at potential zero,  This is called the Capacity of 4,. It depends
on the form and position of all the conductors in the system.

Of the rest ¢, is the charge induced on ., when 4, is main-
tained at potential unity and all the other conductors at potential
zero.  This s ealled the Coeflicient of Induction of 4, on ..

The mathematical determination of the coeflicients of potential
and of eapacity from the known forms and positions of the con-
ductors is in general diflicult.  We ghall afterwards prove that they
have always determinate values, and we shall determine their values
in certain special cases. For the present, however, we may suppose
them to be determined by actual experiment.

Dimensions of these Coefficients,

Since the potential of an electrified point at a distance » is the
charge of electricity divided by the distance, the ratio of a quantity
of electricity to a potential may be represented by a line. Hence
all the coefficients of capacity and induction (g) are of the nature of

lines, and the coeflicients of potential (#) are of the nature of the
reciprocals of lines,
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88.]  RECIPROCAL PROPERTY OF TIE COEFFICIENTS. a1

88.] TueoreM I. Zhe coeflicients of A, relative to d, are equal lo
those of A4, relative to A,

If 7, the charge on 4, is increased by 8%, the work spent in
bringing 5%, from an infinite distance to the conductor 4, whose
potential is ¥, is by the definition of potential in Art. 70,

V.er.,
and this expresses the inerement of the clectric energy caused by
this increment of charge.

If the charges of the different conductors are increased by 3.7,
&e., the increment of the electric encrgy of the system will be

3Q = V3l + &e. + V, 8 E, + &e.

If, therefore, the electric encrgy @ is expressed as a function
of the charges I, 7,, &c., the potential of any conductor may bhe
expressed as the partial differential coeflicient of this function with
respect to the charge on that conductor, or

aQ aQ
V,= ((z]?r ...... V, = (li/?‘)

Since the potentials are linear functions of the charges, the energy

must be a gquadratic furiction of the charges. If we put

CL, F,
for the term in the expansion of @ which involves the product
L. F,, then, by diflerentiating with respect to 7, we find the term
of the expansion of V, which involves Z, to be CF,.

Differentiating with respect to Z%., we find the term in the
expansion of ¥, which involves %, to be CZ,.

Comparing these results with equations (1), Art. 86, we find

P =0C=p,,
or, interpreting the symbols p,, and p,, :—

The potential of 4, due to a unit charge on 4, is equal to the
potential of A, due to a unit charge on 4,.

This reciprocal property of the clectrical aetion of one eonductor
on another was established by Helmholtz and Sir W. Thomson.

If we suppose the conductors 4, and 4, to be indefinitely small,
we have the following reciproeal property of any two points :—

The potential at any point A,, due to unit of electricity placed
at 4, in presence of any system of conductors, is a function of the
positions of 4, and 4, in which the coordinates of 4, and of ,
enter in the same manner, so that the value of the funetion is
unchanged if we exchange ., and 4,.
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This function is known by the name of Green’s Funetion,

The cocfficients of induction ¢r, and g,, are also equal. This is
easily seen from the process by which these coeflicients are obtained
from the coefficients of potential. Tor, in the expression for ¢,,,
2 and p,, enter in the same way as ., and p,, do in the expression
for ¢,..  Hence if all pairs of coefficients 7 and p,, are equal, the
pairs ¢,, and ¢,, are also equal,

80.] Turoney IL. Let a charye E, be placed on A, and let all
lhe other conductors e at potential zero, and let the charge
induced on A, be —n,, I, thenif A, is discharged and tnsulated,
and A, brought to potential T, the other conductors being at
polential zero, then the potential of A, will be +n, 0.

For, in the first case, if % is the potential of 4., we find by

equations (2),
L=q.,F, and E =gq,T.

[/ N (7
Ilence F, = Ire L, and a, =— Vi)
9or Drr

In the second case, we have
Eo=0=q,T4q.7T.

Hence )= — T L=man,lI

ra st
rr

From this follows the important theorem, due to Green :(—

If a charge unity, placed on the conductor 4, in presence of
conductors A, 4,, &e. at potential zero induces charges —u,,
—~,, &c. in these conductors, then, if 4, is discharged and in-
sulated, and these conductors are maintained at potentials 7, 77,
&c., the potential of A, will he

Iy +n, 7, 4 &e.
The quantities (u) are evidently numerical quantities, or ratios.

The conductor 4, may he supposed reduced to a point, and
4, 4,, &e. need not be insulated from each other, but may be
different, clementary portions of the surface of the same conductor.
We shall sce the application of this principle when we investigate
Green’s Functions.

90.] Turorry IT1. Tie coefficients of polential are all positive,
but none of the coefficients Des 18 greater Lhan p, or p,,.

For let a charge unity he communicated to 4,, the other con-
ductors being uncharged. A system of equipotential surfaces will

i3
i
-

Sk
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be formed. Of these one will be the surface of 4,, and its potential
will be p,.. If 4, is placed in a hollow excavated in A, so as to be
completely enclosed by it, then the potential of 4, will also Lo p,,.

If, however, 4, is outside of 4, its potential p,, will lie between
Py and zero.

For consider the lines of force issuing from the charged con-
ductor A,. The charge is measured by the excess of the number
of lines which issue from it over those which terminate in it.
Hence, if the conductor has no charge, the number of lines which
enter the conductor must be equal to the number which issue from
it. The lines which enter the conductor come from places of greater
potential, and those which issue from it go {o places of less poten-
tial.  Hence the potential of an uncharged conductor must be
intermediate hetween the highest and lowest potentials in the field,
and thercfore the highest and lowest potentials cannot belong to
any of the uncharged bodies.

The highest potential must therefore be p,,., that of the charged
body ,, and the lowest must be that of space at an infinite dis-
tance, which is zero, and all the other potentials such as p,, must
lie between g, and zero.

If A, completely surrounds 4,, then p,, = ,,.

91.] Turorex IV. None of the coefficients of induction are positive,
and the sum of all those belonging to w single conduclor is not
nuwmerically greater than the coefficient of capacity of that con-
ductor, whick is always posilive,

For let 4, be maintained at potential unity while all the other
conductors are kept at potential zero, then the charge on 4, is ¢,,,
and that on any other conductor 4, is ¢,,.

The number of lines of force which issue from 4, is p,,. Of these
some terminate in the other conductors, and some may proceed to
infinity, but no lines of force can pass between any of the other
conductors or from them to infinity, because they are all at potential
zero.

No line of force can issue from any of the other conductors such
as 4,, because no part of the field has a lower potential than 4,.
If 4, is completely cut off from .1, by the closed surface of one
of the conductors, then ¢,, is zero. If 4, is not thus cut off, ¢,, is a
negative quantity.

If one of the conductors 4, completely surrounds 4,, then all
the lines of force from A, fall on 4, and the conductors within it,
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and the sum of the coeflicients of induction of these conductors with
respect to 4, will be equal to g,, with its sign changed. But if
4, is not completely surrounded by a conductor the arithmetical
sum of the coeflicients of induction ¢res &c. will be less than ¢,,.

We have deduced these two theorems independently by means
of electrical considerations.  We may leave it to the mathematical
student to determine whether one is a mathematical consequence
of the other.

Resultant Mechanical Force on any Conductor in lerms of the Charges.

92.] Let 8¢ he any mechanical displacement of the conductor,
and let & be the the component of the force tending to produce that
displacement, then &3¢ is the work done by the foree during
the displacement. If this work is derived from the electrification
of the system, then if @ is the electric energy of the system,

DPip+5Q = 0, (3)
o
or P = --s-g- (4)
Here Q=3I+ EF,+&e) (5)

If the bodies are insulated, the variation of @ must be such that
£, E,, &e. remain constant. Substituting thercefore for the values
of the potentials, we have

Q=423,(Z L,p.), (6)
where the symbol of summation ¥ includes all terms of the form
within the brackets, and 7 and s may each have any values from
1 to 2. From this we find

Q_ _rseimp e

D = ~4g =13 s, (% Z, T;T/I (7)

as the expression for the component of the foree which produces
variation of the generalized coordinate ¢.

Resullant Mechanical Loree in terms of the Polentials.

93.] The expression for & in terms of the charges is
O=—i3 % (Js',]s', f{%)"), (8)
where in the summation » and ¢ have each cvery value in suc-
eession from 1 1o 2,
Now £, = 2/(I74,) where ¢ may have any value from 1 {o »,
80 that
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. ap,,
D = —*&S,. E,. Ez (ﬁu Ifgrl —(f—(’T) (Q)

Now the coefficients of potential are conneeted with those of
induction by » equations of the form

2"r (])m' qvxr) =1, (10)
and 32 (2~1) of the form
Er (/)ur /[Yn') = 0. (1 ])
Differentiating with respect to ¢ we get 42 (2 4 1) equations of
the form Ay - .
Er(])ur (l(l))'f"\-’r(ql:r {](p) = Oa (12)

where @ and & may be the same or different.
Hence, putting « and 4 equal to » and s,

NI N AN 7 I”/r
¢ =43,33(%¥%p, T(,:), (13)
but X (%, p,,) =¥, so that we may write
\] e (]f/',
v = im0 ), o

where » and ¢ may have cach every value in succession from 1
to . This expression gives the resultant force in terms of the
potentials,

If cach conductor is connected with a battery or other con-
trivance by which its potential is maintained constant during the
displacement;, then this expression is simply

d
) s
under the condition that all the potentials are constant.

The work done in this case during the displacement dep is D 8¢,
and the eleetrical energy of the system of conductors is inereased
by 6@; hence the cnergy spent by the batteries during the dis-
placement is

Pop4-0Q = 2dd¢p = 25Q. (16)
It appears from Art. 92, that the resultant force & is equal to

{ e
_(/?, under the condition that the charges of the conductors are
o

. 7(
constant. It is also, by Art. 93, equal to [~Q, under the con-

o
dition that the potentials of the conductors m'el constant. If the
conductors are insulated, they tend to move so that their energy
is diminished, and the work done by the electrical forecs during
the displacement is equal to the diminution of energy.

If the conduectors are eonnceted with batteries, so that their
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potentials are maintained constant, they tend to move so that the
cnergy of the system is increased, and the work done by the
electrical forces during the displacement is equal to the increment
of the energy of the system. The energy spent by the hatteries
is equal to double of cither of these quantities, and is spent half
in mechanical, and half in electrical work.

On the Comparison of Similar Electrified Systems.

94.] If two electrified systems are similar in g geometrical sense,
so that the lengths of corresponding lines in the two systems
are as L to Z/, then if the dielectric which separates the conducting
bodies is the same in both systems, the coeflicients of induction
and of capacity will be in the proportion of Z to I/, Tor if we
consider corresponding portions, 4 and &, of the two systems, and
suppose the quantity of electricity on 4 to be Z and that on 4
to be Z’, then the potentials ¥ and F at corresponding points
B and Z, duc to this electrifieation, will be

V= L and V_Z'-I)";.

But 4B is to A’B as L to I/, so that we must have
EE LV . L'V,

But if the inductive capacity of the dielectric is different in {he
two systems, heing A in the first and A in the sccond, then if the
potential at any point of the first system is to that at the cor-
responding point of the second as ¥ to ¥, and if the quantities
of electricity on corresponding parts are as 7 to £, we shall have

L:FE ::LFVK: L'V'K'.

By this proportion we may find the relation between the total
clectrification of corresponding parts of two systems, which are
in the first place geometrically similar, in the second place com-
posed of dicleetric media of which the dielectric inductive capacity
at corresponding points is in the proportion of K to K, and in
the third place so clectrified that the potentials of corresponding
points are as /" to F”,

From this it appears that if 7 be any cocfficient of capacity or
induction in the first system, and 4" the corresponding one in the
sccond, ¢:¢ :: LK: L’K’;
and if » and p denote corresponding coefficients of potential in
the two systems, , 1 1

Py H W
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If one of the bodies be displaced in the first system, and the
corresponding body in the second system receive a similar dis-
placement, then these displacements are in the proportion of 1/
to 1/, and if the forces acting on the two bodies are as F {0 J,
then the work done in the two systems will be as 4 to F'L.

But the total electrical energy is half the sum of the quantitics
of clectricity multiplied cach by the potential of the eleetrified
body, so that in the similar systems, if @ and @ be the total
electrical energy,

Q:Q ::EV . E]",
and the difference of energy after similar displacements in the two
systems will be in the same proportion. Hence, since £ is pro-
portional to the electrical work done during the displacement,
L1l o KV BF

Combining these proportions, we find that the ratio of the
resuliant foree on any body of the first system to that on the
corresponding body of the sccond system is

B 2K 2 F2RY
Y Ak
AT Ll
The first of these proportions shews that in similar systems the
force is proportional to the square of the clectromotive force and
to the inductive capacity of the dielectrie, but is independent of the
actual dimensions of the system.

Hence two conductors placed in a liquid whose inductive capacity
is greater than that of air, and electrified to given potentials, will
attract each other more than if they had been electrified to the
same potentials in air,

The sccond proportion shews that if the quantity of electricity
on cach body is given, the forces are proportional to the squares
of the clectrifications and inversely to the squares of the distances,
and also inversely to the inductive capacities of the media.

Ience, if two conductors with given charges are placed in a
liquid whose inductive capacity is greater than that of air, they
will attract cach other less than if they had been surrounded with
air and clectrified with the same charges of electricity.
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CHAPTER 1V.

GENERAL THEOREMS.

95.] IN the preceding chapter we have caleulated the potential
function and investigated its properties on the hypothesis that
there is a direct action at a distance between clectrified bodies,
which is the resultant of the direct actions between the various
clectrified parts of the bodies.

If we call this the dircet method of investigation, the inverse
method will consist in assuming that the potential is a function
characterised by properties the same as those which we have already
established, and investigating the form of the function,

In the direct method the potential is caleulated from the dis-
tribution of electricity by a process of integration, and is found
to satisfy certain partial differential equations, In the inverse
method the partial differential equations are supposed given, and
we have to find the potential and the distribution of electricity.

It is only in problems in which the distribution of electricity
is given that the dircet method can be used. When we have to
find the distribution on a conductor we must make use of the
inverse method.

We have now to shew that the inverse method leads in every
case to a determinate result, and to establish certain general

theorems deduced from Poisson’s partial differential equation
aayv a4V v
] W + Zz‘—z-+47rp = 0.
The mathematical ideas expressed by this equation are of a
different kind from those expressed by the equation

t® 4o Lo P
V= f / / ;(l:c’ dy’ &z

In the differential equation we express that the values of the
second derivatives of 7 in the neighbourhood of any point, and

i
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the density at that point are related to cach other in a certain
manner, and no relation is expressed between the value of / at
that point and the value of p at any point at a sensible distance
from it.

In the second expression, on the other hand, the distance between
the point (2/, 4/, 2") at which p exists from the point (2 7, 2) at
which 77 exists is denoted by 7, and is distinetly rccognised iu the
expression to he integrated.

The integral, therefore, is the appropriate mathematical expression
for a theory of action between particles at a distance, whereas the
differential equation is the appropriate expression for a theory of
aclion exerted between contiguous parts of a medinm.

We have seen that the result of the integration satisfies the
differential equation. We have now to shew that it is the only
solution of that equation fulfilling certain conditions.

We shall in this way not only establish the mathematical equi-
valence of the two expressions, but prepare our minds to pass from
the theory of direct action at a distance to that of action hetween
contiguous parts of o medium.

Characteristics of the Potential Function.

96.] The potential function 7, considered as derived by integration
from a known distribution of electricity either in the substance of
bodies with the volume-density p or on certain surfaces with the
surface-density ¢, p and o being everywhere finite, has been shewn
to have the following characteristics :—

(1) 7 is finite and continuous throughout all space.

(2) ¥ vanishes at an infinite distance from the electrified system,

(3) The first derivatives of 7" are finite throughout all space, and
continuous except at the cleetrified surfaces.

(4) At every point of space, except on the clectrified surfaces, the
equation of Poisson

&2V AV dEFP

Wt aE T aE
is satisfied. We shall refer to this equation as the General
Characteristic equation.

At every point where there is mo electrification this equation
hecomes the equation of Laplace,

aav ;v arr

02

+4d7p =0
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(8) At any point of an clectrified surtace at which the surface.
density is o, the first derivative of /7, taken with respeet to the
normal to the surface, changes its value abruptly at the surface,
s0 that A’ dl

T gy A=
where » and o are the normals on cither side of the surface, and
Fand 7' are the corresponding potentials,  We shall vefer to this
equation as the Superficial Characteristic equation,

(6) If 77 denote the potential at a point whose distance from
any lixed point in a finite clectrical system is », then the product
/'r, when » increases indefinitely, is ultimately equal to £, the total
charge in the finite system.

97.1 Lemma. Lot 17 he any continuous function of 2, ¥, =, and
let «, v, w be functions of ., J» <, subject to the general solenoidal
condition de  dv dw

Wttt = M
where these functions are continuous, and to the superficial sole-
noidal condition

(g —n)+m (0)— )+ u (i —w)y = 0, (2)
at any surfice at which these funetions hecome discontinuous,
{, m, 2 being the direction-cosines of the normal to the surface,
and wy, 0, 0 and a,, v, w, the values of the functions on opposite
sides of the surface, then the triple integral

M = //:/(1( Z‘f; + v ’(/I +w (;%{—) dady d= (3)

ly
vanishes when the integration is extended over a space bounded by
surfaces at. which either /7 is constant, or

lutmv4nw =0, )
l, m, m, heing the direction-cosines of the surface,

Before proceeding to prove this theorem analytically we may
observe, that if #, », w be taken to represent the components of the
velocity of a homogencous incompressible fluid of density unity,
and if 7 be taken to represent the potential at any point of space
of forees acting on the fluid, then the general and superficial equa-
tions of continuity ((1) and (2)) indieate that every part of the
space is, and continues to he, full of the fluid, and equation (1)
is the condition to be fulfilled at u surface through which the fluid
does not pass,

The integral 37 represents the work done by the fluid against
the forees acting on it in unit of time.
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Now, since the forees which act on the fluid arve derived from
the potential function 7, the work which they do is subject to the
law of conservation of encrgy, and the work done on the whole
fluid within a certain space may be found if we know the potential
at the points where each line of flow enters the space and where
it issues from it.  The excess of the second of these potentials over
the first, multiplied by the quantity of fluid which is transmitted
along cach line of flow, will give the work done by that portion
of the fluid, and the sum of all such products will give the whole
work.

Now, if the space be bounded by a surface for which I'=C, a
constant quantity, the potential will he the same at the place
where any line of flow enters the space and where it issues from
it, so that in this case no work will be done by the forees on the
fluid within the space, and I = 0.

Secondly, if the space be bounded in whole or in part by a
surfice satisfying equation (1), no fluid will enter or leave the space
through this surface, so that no part of the value of A/ can depend
on this part of the surfuce.

The cuantity 3/ is therefore zero for a space bounded externally
by the closed surface /'=¢, and it remains zero though any part
of this space be eut off from the rest by surfaces fulfilling the
condition ().

The analytical expression of the process by which we deduce the
work done in the interior of the space from that which takes place
at the bounding surface is contained in the following method of
integration hy parts,

Taking the first term of the integral 4/,

./;/.-/M ((]/C, dudy iz =j‘/3(’17') dy ‘]:—‘/ff/‘— :ﬁl: dadydz,

where Sudy = w =y —u 4 &e;

and where 77, #,1%, &e. are the values of # and » at the points
whose coordinates are (z,, y, 2), (4, 4, 2), &, 2y, @4, &e. being the
values of & where the ordinate euts the bounding surface or surfaces,
arranged in descending ovder of magnitude.

Adding the two other terms of the integral 37, we find

-

M= // S(nl) rly(l:+./:/.‘.‘ (e17)ydzde +./:/‘}3 (wl") dzdy
(- pde de dw )
_j:/:/ 7 ({71— + dy + (/J)(.l'(lyll..
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(', m, n are the direction-cosines of the normal drawn inwards
from the bounding surface at any point, and «§ an element of that
surface, then we may write

M=~ [/ " (b + mo 4 naw) d.S — / / [ A (:% + ://; + ((?i dadydz ;

the integration of the first term being extended over the Lounding
surface, and that of the seeond throughout the entire space.

For all spaces within which «, ¢, w are continuons, the second
term vanishes in virtue of equation (1). Tf for any surface within
the space #, v, w are discontinuous but subject to equation (2), we
find for the part of 47 depending on this surface,

My =— // Fy (e 4 mey vy 1y 0e) ds,,

My, = — / / Follyw,+myv, 40,0, dS,; .

where the suflixes | and ,, applied to any symbol, indicate to which
of the two spaces separated L~ the surface the symbol belongs.
Now, since /" is continuous, we have at every point of the surface,

h=r=r;
we have also 48 = dS, = ds;
but sinee the normals are drawn in opposite directions, we have
h ==, =1 w =—n, =, Ny o=, = u;

so that the total value of A7, so far as it depends on the surface of
discontinuity, is

M+, = -—ffl'(l(ul—a._:) S+ (v =)+ 2 (wy — w,)) dS.

The quantity under the integral sign vanishes at every point in
virtue of the superficial solenoidal condition or characteristic (2).

Hence, in determining the value of 37, we have only to consider
the surface-integral over the actual bounding surface of the space
considered, or

AN = -—//l-"(/u +me+nw)dS.

Case 1. If }is constant over the whole surface and equal to C,

A= -—-C/f(/u + mo ++nw)dS.,

The part of this expression under the sign of double integration
represents the surface-integral of the flux whose components are
#, v, 2, and by Art, 21 this surface-integral is zero for the closed
surface in virtue of the gencral and superficial solenoidal conditions

(1) and (2).
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Hence M = 0 for a space bounded by a single equipotential
surface.

If the space is bounded externally by the surface 7= C, and
internally by the surfaces 7 = €, V' = C,, &c., then the total value
of A for the space so bounded will be

M-, — M, &e.,
where M is the value of the integral for the whole space within the
surfuce ¥ = C, and Af;, M, are the values of the integral for the
spiaces within the internal surfaces. But we have seen that 2/,
MM, M, &e. are cach of them zero, so that the integral is zero also
for the periphractic region between the surfaces.

Case 2. If lu+mv+mnw is zero over any part of the bounding
surface, that part of the surface can contribute nothing to the value
of 3, beeause the quantity under the integral sign is everywhere
zero. Hence A will remain zero if a surface fulfilling this con-
dition is substituted for any part of the bounding surface, provided
that the remainder of the surface is all at the same potential.

98.] We are now prepared to prove a theorem which we owe to
Sir William Thomson *,

As we shall require this theorem in various parts of our subjeet,
I shall put it in a form capable of the necessary modifications.

Let a, 6, ¢ be any functions of , ¥, # (we may call them the
components of a flux) subject only lo the condition "

P 2T ®
where p has given values within a certain space. This is the general
characteristic of «, 4, c.

Let us also suppose that at certain surfaces (S) ¢, b, and c are
disgontinuous, but satisfy the condition

L(ay—a)+m(by—b)+n(—Ccl)+4mo =05 (6)

where Z, 7, 2 are the direction-cosines of the normal to the surface,
ay, &y, ¢ the values of a,4, ¢ on the positive side of the surface, and
@y, b,, ¢, those on the negative side, and ¢ a quantity given for
every point of the surface. 'This condition is the superficial charac-
teristic of , &, c.

Next, let us suppose that 7 is a continuous function of =, 7, z,
which cither vanishes at infinity or whose value at a certain point
is given, and let 7 satisfy the general characteristic equation

* Cambridye and Dublin Mathematical Journal, February, 1848,
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(/I' V4 th (Z/’

: - - = 7

(f,v g A o ATy =03 (7)

and the superficial charactenstic at the surfaces (9),

. dV, -(]7 (H e e
[(1‘ dr )+ (I‘ A, (///)

(17

+u(l{lfu—} )+}'n'rr_.0, (8)

K being a quantity which may he positive or zero but not negative,

given at every point of space.
Finally, let 8 m @ represent the triple integral

8@ = /// 11C (2 + 824 c2)dudy d, ©)

extended over a space hounded by surfaces, for cach of which ecither

V = constant,

AV v d¥V
or la+mb+ne = Ki /--—}-]\ // + Ku B=0 (10)
where the value of ¢ is given at every point of the surface; then, if _,

@, b, ¢ be supposed to vary in any manner, subject to the above
conditions, the value of Q will be a wnigue minimum, when

€ = K it} ]) = ]((‘/I-[: C = I\'{({/I:/' (1 ])

Lroos.
If we put for the general values of «, 4, ¢,
a_.K +1(, /J—’\(/l + c=/\',”»+w,- (12)
/ dy d:

then, by substituting these values in equations (5) and (7), we find
that , v, w satisty the gencral solenoidal condition
de dv dw

W Tty tE=
We also find, by equations (6) and (8), that at the surfaces of
discontinuity the values of #,, v, #, and Uy, Uy, w0, satisfy the
superficial solenoidal condition
(2) L(uy—w)+m(vy~v)+n(wy—w,) = 0.
The quantities o, r, w, therefore, satisty at every point the sole-
noical conditions as stated in the preceding lemma.
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We may now express @ in terms of #, v, w and ¥,
2

¢ =./:/:/K ((fflt’ + (5}[/-4_ (({llgi-)’]‘“[y‘h +f_/n/71‘7 (1% + 0% +w?)dedy dz

AR 'd - r
+ 2./‘/'/‘@ (,I/f + 0 ((Z +w (%)(I.v({ydz. (13)

The last term of Q may be writlen 2.3/, where  is the quantity
considered in the lemma, and which we proved to be zero when the
space is bounded Dby surfaces, each of which is either equipotential
or sutisfies the condition of equation (10), which may be written

(4) lutmetuw =0,

Q is therefore reduced to the sum of the first and second terms,

Tn each of these terms the quantity under the sign of integration
consists of the sum of three squares, and is therefore essentially
positive or zero. Hence the result of integration can only he
positive or zero.

Let us suppose the function 7 known, and let us find what values
of u, v, will make @ a minimum.

1f we assume that at every point # = 0, v = 0, and » = 0, these
values fulfil the solenoidal conditions, and the second term of @
is zero, and @ is then a minimum as regads the variation of
Uy v, 0.

For if any of these quantitics had at any point values differing:
from zero, the second term of @ would have a positive value, and
Q would be greater than in the case which we have assumed.

Butif # = 0, » = 0, and w = 0, then

any o=k, 4= ¥4, ok
dz dy dz
Hence these values of @, 4, ¢ make @ 2 minimum.

But the values of a, 4, ¢, as expressed in equations (12), are
perfectly general, and include all values of these guantities con-
gistent with the conditions of the theorem. IHence, no other values
of @, b, ¢ can make @ a minimum,

Again, @ is a quantity essentially positive, and therefore @ is
always capable of a minimum value by the variation of «, 4, ¢.
Hence the values of @, 4, ¢ which make @ a minimum must have
a real existence. It does not follow that our mathematical methods
are sufficiently powerful to determine them,

Corollary I. I{ a, b, ¢ and K are given at every point of space,
and 1f we write
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LAF AV AV
(12) (t=1\;2; +u, b:]x;{&--{-v, c=]\;/;+w,
with the condition (1)
du  dv  dw
de Tyt as

= J
then /', #, v, w can be found without ambiguity from these four
equations,

Corollary 11. The general characteristic equation

& LAV d o dV < ]\’(l—}f 470 = O
da™" de T dy r/y+(_lz Zz time =0

where /7is a finite quantity of single value whose first derivatives
are finite and continuous except at the surface S, and at that surface
fulfil the superficial characteristic

N{—7 . dV, - dV,
A e A U e
LAV, dY,
+ 7"(]\1 '7: —A'.! “'(122)**' 170 = 0,

can be satisfied by one value of 7, and by one only, in the following
cases.

Cuse 1. When the equations apply to the space within any closed
surface at every point of which 7 = C,

For we have proved that in this case «, 4, ¢ have real and unique
values which determine the first derivatives of F, and hence, if
different values of 7 exist, they can only differ by a constant. But,
at the surface /7 is given equal to €, and therefore 7 is determinate
throughout the space.

As a particular case, let ns suppose a space within which p=20
bounded hy a closed surface at which F"=¢. The characteristic
equations are satisfied by making /= C for every point within the
space, and therefore /"= C is the only solution of the equations,

Case 2. When the equations apply to the space within any closed
surfuce at every point of which 7 is given.

For if in this case the characteristic cquations could be satisfied
by two different values of 7, say Fand /7, put U=¥—7]" then
subtracting the characteristic cquation in #” from that in F, we
find a characteristic equation in U/, At the closed surface U = 0
because at the surface 7=/, and within the surface the density
is zero heeause p = p’.  Hencee, by Case 1, I/ = 0 thronghout the
enclosed space, and therefore /"= 77 throughout this space,

FrIron
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Case 3. When the equations apply to a space bounded by a
closed surface consisting of two parts, in one of which /" is given at
every point, and in the other

AV ar . dr
K ZTZ:L‘— +K7}l;/‘T/ +]\n -(_l; =1,
where ¢ is given at every point.
For if there are two values of /, let U/’ represent, as before, their
difference, then we shall have the equation fulfilled within a closed
surface consisting of two parts, in one of which U’= 0, and in the

other auv’ AU’ av’
b 4 ~— F+n——=0;
dz dy dz
and since U'= 0 satisfies the equation it is the only solution, and
therefore there is hut one value of 7™ possible.

Note.—The function 7" in this theorem is restricted to one value
al cach point of space. If multiple values are admitted, then,
if the space considered is a cyclic space, the cquations may he
satisfied by values of 7 containing terms with multiple values.
Examples of this will occur in Electromagnetism.

99.] To apply this theorem to determine the distribution of
clectricity in an electrified system, we must make A = 1 throughout
the space occupied by air, and K= o throughout the space occupied
by conductors. If any part of the space is occupied by diclectrics
whose inductive capacity differs from that of air, we must make K’
in that part of the space equal to the specific inductive capacity.

The value of 7, determined so as to fulfil these conditions, will
be the only possible value of the potential in the given system.

Green’s Theorem shews that the quantity @, when it has its
minimum value corresponding to a given distribution of clectricity,
represents the potential energy of that distribution of electricity.
Sce Art. 100, equation (11).

In the form in which @ is expressed as the result of integration
over every part of the ficld, it indicates that the energy due to the
clectrification of the bodies in the field may be considered as the
result of the summation of a certain quantity which exists in every
part of the field where electrical force is in action, whether elec-
trification be present or not in that part of the ficld.

The mathematical method, thercfore, in which @, the symbol
of electrical energy, is made an object of study, instead of p, the
symhol of electricity itself, corresponds to the method of physical
speculation, in which we look for the scat of clectrical action in
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every part of the ficld, instend of confining our attention to the
cleetrified badies,

The fact that Q attains a minimum value when the components
of the electric force are expressed in terms of the first derival ives
of a potential, shews that, if it wore possible for the clectrie foree
to bLe distributed in any other manner, a mechanical force would
be brought into play tending to bring the distribution of force
into its actual state. The actual state of the clectric field is
therefore a state of stable equilibrium, considered with reference
to all variations of that state consistent with the actual distribution

of free electricity,
Green’s Theorem.

100.] The following remarkable theorem was given by George
(ircen in his essay ¢ On the Application of Mathematics to Electrieity
and Magnetism.’ .

I have made use of the coeflicient K, introduced by Thomson, to
give greater generality to the statement, and we shall find as we
proceed that the theorem may be modified so as to apply to the
most general constitution of erystallized media.

We shall suppose that @7 and /™ are two functions of , 7,z
which, with their first derivatives, are finite and continuous within
the space bounded by the closed surface S,

We shall also put for conciseness
d . dU d dli 4 . JdU
Gt di Tt K =, (W
d K A d AV 1]

Ldl ,
Gt ae T gt E kK =t (2)

S

and

where A is a real quantity, given for each point of space, which
may be positive or zero but not negative.  The quantities p and
p" correspond to volume-densities in the theory of potentials, but,
in this investigation they are 1o be considered simply as ab-
breviations for the functions of ¢ and J° 1o which they are here

cquated.
In the same way we may put
LAl i Ldl
LA e +m A ) + n K ge =T (3)
s dl dl”
and AaF - =l7d .
[ R (/‘”-{-ml\ (/.’/—{-71/\'/: Lo, ()

where /, . w are the divection-cosines of the normal drawn inwards
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from the surface §. The quantities ¢ and o correspond to super-
ficial densities, hut at present we must consider them as defined by
the above equations,
Green’s Theorem is obtained by integrating by parts the ex-
pression
dUdr (/U/U" AU dF, ~
Al —/ [A ((/c da (/V dy ti l/.,) do dy &z ®)

throughout the space within the surface S.
4

. . dr Ly
If we conslder - as a component of a forece whose potential 1s 7/,

e

and Ix - as a component of a flux, the expression will give the

work dom by the force on the flux.
If we apply the method of integration by parts, we find

/
o = fl/f(z’”’ ’]/ nVyas

(/ U d t]U ,(IU .
_./ /:/ 4 (/.L (/z (/J K (/y / h Cadyds 5 (6)

or 4 7.-.3/:: ‘17m' I dS —{-f[f-lnp' Fdedydz. (7)

In precisely the same manner by exchanging ¢ and /', we should
find _ r r

da = 4 // YmeUdS+ [/:/ trpUda dyd:. (8)

The statement of Green’s Theorem is that these three expressions
for A are identical, or that

M= //ﬂ' VdS + /'[/‘p,}-’(hr dyd: =./1/‘o‘ U(ZS+[[[;> Uda dy dz

11[’(11’ (lU(ZI' dU dV. .
2 _ 9
17:.//:/ (z/z (11, dy dy Yz @ )d'“]‘/l/ ®)

Correetion of Green’s Theorem for Cyclosis.

There are cases in which the resultant force at any point of a
certain region fulfils the ordinary condition of having a potential,
while the potential itself is a many-valued function of the coor-
dinates, For instance, if

1’:-,,'7/--’,7’ Y:—--—;‘L’ =0,
at 4yt x4yt

v

we find /"= tan~ 0 many-valued function of a2 and y, the

values of J” furmmtr an arithmetical series whose common difference
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is 27, and in order to define which of these is to he taken in
any particular case we must make some restriction as to the line
along which we are to integrate the force from the point where
¥ =0 to the required point.

In this case the region in which the condition of having a
potential is fulfilled is the eyclic region surrounding the axis of z,
this axis being a line in which the forces are infinite and therefore
uot itself included in the region.

The part of the infinite plane of 2z for which # is positive may
be taken as a diaphragm of {his cyclic region. If we hegin at
a point close to the positive side of this diaphragm, and integrate
along a line which is restricted from passing through the diaphragm,
the line-integral will be restricted to that value of J which is
positive but less than 2 7.

Let us now suppose that the region bounded by the closed surface
8 in Green’s Theorem is a cyclic region of any number of cycles,
and that the function 7™ is a many-valued function having any
number of cyclic constants.

e AV Al T "
The quantities (L—: 22, and ¢ will have definite values at all
dz " dy dz

points within 5, so that the volume-integral

/ff’f (U avar v,
. ity w)

has a definite value, ¢ and p have also definite values, so that if {7
15 a single valued function, the expression

'/-/(rUtZS—f-‘/./:/.pU(l.vdy(k

hus also a definite value,

The expression involving 7" has no definite value as it stands,
for /”is a many-valued function, and any expression containing it
is many-valued unless some rule be given whereby we are dirceted
to select one of the many values of ™ at cach point of the region.

To make the value of 7" definite in a region of # eycles, we must
coneeive # diaphragms or surfaces, each of which completely shuts
one of the channcls of communication between the parts of the
cyclic region. Each of these diaphragms reduces the number of
cycles by unity, and when # of them are drawn the region is still
a connected region but acyclie, so that we can pass from any one
point to any other without cutting a surface, hut only by recon-
cileable paths.

;
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Let 8 be the first of these diaphragms, and let the line-integral
of the force for a line drawn in the acyclic space from a point
on the positive side of this surface to the contiguous point on
the negative side be «,, then «, is the first cyclic constant.

Let the other diaphragms, and their corresponding cyclic con-
stants, be distinguished by suffixes from 1 to 7, then, since the
‘ region is rendered acyclic by these diaphragms, we may apply to
it the theorem in its original form.

We thus obtain for the complete expression for the first member
of the equation

/ffp’ Videdydz +/:/.a’7"ll;5' +ffo-1’xl ds, +ffo'2'«2 d8,+&e. + /rr,,’x,, ds,.

The addition of these terms to the expression of Green’s Theorem,
in the case of many-valued functions, was first shewn to be necessary
by Helmholtz *, and was first applied to the theorem by Thomson.

j
J
3
¢

Plysical Interpretation of Green’s Theorem.

The expressions odS and pda dy dz denote the quantities of
electricity existing on an element of the surface § and in an
element of volume respectively. 'We may therefore write for either
of these quantitics the symbol ¢, denoting a quantity of clectricity.
We shall then express Green’s Theorem as follows—

M=2(I'd)y=2(V"e);
where we have two systems of electrified bodies, ¢ standing in
succession for e}, e,, &c., any portions of the electrification of the
first system, and 7 denoting the potential at any point due to all
these portions, while ¢’ stands in succession for ¢/, ¢, &c., portions
of the second system, and 7’ denotes the potential at any point
due to the second system.

Hence 7¢’ denotes the product of a quantity of electricity at a
point belonging to the second system into the potential at that
point due to the first system, and = (77¢) denotes the sum of all
such quantities, or in other words, = (7¢') represents that part of
the energy of the whole electrified system which is due to the
action of the second system on the first.

In the same way 3 ( F”¢) represents that part of the energy of

* ¢ Ueber Integrale der Hydrodynamischen Gleichungen weclehe den Wirbelbe-
wegungen entsprechen,’ Crelle, 1858." Translated by Tait in PLil. Mag., 1867, (3).
+ ¢ On Vortex Motion, Trans. R. S. Edin., xxv. part i. p. 241 (1868).
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the whole system which is duc to the action of the first system on
the second.

If we define 7" as E(;), where 7 is the distance of the quantity e

of eleetricity from the given point, then the equality between these
two values of 47 may Dbe obtained as follows, without Green’s
Theorem—

El(l"c’) — E'(E(;)c") - EE(e-ﬁ/) —s (\v( ) )__ V(V'

This mode of regarding the question bhelongs to what we have
called the direet method, in which we begin by considering certain
portions of eleetricity, placed at certain points of space, and acling
on one another in a way depending on the distances between these
points, no account being taken of any intervening medium, or of
any action supposed to take place in the intervening space,

Green’s Theorem, on the other hand, belongs essentially to what
we have called the inverse method.  The potential is not supposed
to arise from the cleetrification by a process of summation, but
the electrification is supposed to be deduced from a perfectly
arbitrary function called the potential by a process of differen-
tiation,

In the direct method, the equation is a simple extension of the
law that when any force acts directly between two bodies, action
and reaction are equal and opposite.

In the inverse method the two quantities are not proved directly
to be equal, but each is proved equal to a third quantity, a triple
integral which we must endeavour to interpret.

If we write 2 for the resultant electromotive foree due to the
potential /', and /, m, 2 for the dircetion-cosines of X, then, by

Art. 71,

P py =k,
(/-L (/.’/ ({:

If we also write /' for the force due to the second system, and
U, m'y a for its direction-cosines,

ar: .., dr’ . dv: ., .
—T—/ Z, llf—ﬂ,m - o=
and the quantity 1/ may be written
1 [T, .-
= Y cos € dedy dz (
W= /// (K RI cos &) dedy ds, (10)
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where cos € = L+ mm’ 4w’
b

€ being the angle between the directions of £ and .

Now it A is what we have called the coefficient of electric
inductive capacity, then KR will be the electric displacement due
to the electromotive force 2, and the product KRR cose will
represent the work done by the force 2’ on account of the dis-
placement caused by the force £, or in other words, the amount
of intrinsic energy in that part of the field due to the mutual
action of 2 and %'.

We therefore conclude that the physical interpretation of Green’s
theorem is as follows:

If the energy which is known to exist in an electrified system
is due to actions which take place in all parts of the field, and
not to direct action at a distance between the electrified bodies,
then that part of the intrinsic energy of any part of the field
upon which the mutual action of two electrified systems depends
is KR R’ cos € per unit of volume.

The energy of an electrified system due to its action on itself is,
by Art. 85, 33 (e}),

which is by Green’s theorem, putting U= ¥,

v [ ¥ ar*  drp

o= [[[x (G +4 + %]

and this is the unique minimum value of the integral considered
in Thomson’s theorem.,

)(]wc{y(/:; (11)

Greew’s Function.

101.] Let a closed surfice S be maintained at potential zero,
Let £ and Q be two points on the positive side of the surface $
(we may suppose either the inside or the outside positive), and
let a small body charged with unit of electricity be placed at P;
the potential at the point @ will consist of two parts, of which one
is due to the direet action of the electricity on P, while the other
is due to the action of the electricity induced on § by P. The
latter part of the potential is called Green’s Funection, and is
denoted by G,

This quantity is a function of the positions of the two points
P and Q, the form of which depends on that of the surface S. It
has been determined in the case in which § is a sphere, and in
a very few other cases. It denotes the potential at @ due to the
electricity induced on § by unit of clectricity at P.

VOL. 1. 1
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The actual potential at any point @ due to the electricity at P
and on §'is 1
Tt GP’)’

by
where 7,, denotes the distance between 22 and Q.

At the surface §;, and at all points on the negative side of S, the

potential is zero, therefore ' 1 1)
==

where the suffix , indicates that a point A on the surface § is taken

instead of Q.

Let a,, denote the surface-density induced by P at a point A
of the surface 8, then, since Gy, is the potential at Q due to the
superficial distribution,

G 2/:/% as’, (2)
p
where 48" is an element of the surface § at A, and the integration
is to he extended over the whole surface .
But if unit of clectricity had heen placed at @, we should have

had by equation (1),
Yy ¢q (1) ,L=—G’.,.u )

rqa' .
=—/:/ ;—.q!l- {ZS; (‘1)
uda’

where o, is the density induced by @ on an clement Z8 at 4, and
7.« 18 the distance between 4 and A, Substituting this value of

P

L .
— in the expression for @

b We find
70«'

] i Tau Ot ’
G, = — f / / [ "I 1S4 (5)

Since this expression is not altered by changing , into . and
, into ,, wo find that G, = @,; (6)
q

ap?
a result which we have already shewn to be neeessary in Art. 88,
but which we now sce to be deducible from the mathematical process
by which Green’s function may be calculated.

If we assume any distribution of electricity whatever, ang place
in the fiell a point charged with unit of electricity, and if the
surface of potential zero completely separates the point from the
assumed distribution, then if we take this surface for the surface 8,
and the point for 2, Green’s function, for any point on the same
side of the surface as P, will be the potential of the assumed dig-
tribution on the other side of the surface, In this way we may
construct any number of cases in which Green's function can be
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found for a particular position of P. To find the form of the
function when the form of the surface is given and the position
of P is arbitrary, is a problem of far greater difficulty, though,
as we have proved, it is mathematieally possible.

Let us suppose the problem solved, and that the point P is
taken within the surface. Then for all external points the potential
of the superficial distribution is equal and opposite to that of 2.
The superficial distribution is thercefore centrobaric*, and its action
on all external points is the same as that of a unit of necgative
electricity placed at 2. .

Method of Approxvimaling lo the Fulues of Coeflicients of Capacity, §rc.

102.] Let a region be completely bounded by a number of
surfaces S,, Sy, 8, &c., and let K be a quantity, posltwe or zero
but not negative; given at every point of this region. Let 7
be a function subjcct to the conditions that its values at the
surfaces 8, 5,, &c. are the constant quantities G, C,, &e, and that
at the surface S, Vid (1)

where v is a normal to the surface §,. Then the integral

(/;[ a4
fff wltalt 'd l)‘]“z/‘k’ (2)

taken over the whoh_ region, has a unique minimum when 7 satisfies

the equation ¢ a7 4 AV _d .4V
Gk nt e Kyt wKE=" ®)
throughout the region, as well as the original conditions.

We have already shewn that a funetion 7 exists which fulfils the
conditions (1) and (3), and that it is determinate in value. We
have next to shew that of all functions fulfilling the surface-con-
ditions it makes Q a minimum.

Let F, be the function which satisfies (1) and (3), and let

= Fpt U (4)
be a function which satisfies (1).
1t follows from this that at the surfaces 8, S, &e. U= 0.

The value of Q bccomes

= (O o)+ (] + 0

Y. @I_ (_(IZU_;_&C)S dzdydz. (5)

* Thomson and Tait's Natural Philosophy, § 526.
12
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Let us confine our attention to the last of these three groups
of terms, merely observing that the other groups are essentially
positive, By Green’s theorem

AT AT Al A Qv diny L dT
ff/ KCR s+ g gy + Gy ) dwdyde = [ JKUS as

d . .dV d . drF, d AV,

"[// Ui Bge + gy X3t + 4s K ) e dydes (6)
the first integral of the second member being extended over the
surface of the region and the second throughout the enclosed space.
But on the surfaces §,, §,, &e. /=0, so that these contribute
nothing to the surface-integral,

-

Again, on the surface S, (—[1]—" = 0, so that this surface contributes
wy

nothing to the integral. Hence the surface-integral is zero.

The quantity within brackets in the volume-integral also dis-
appears by equation (3), so that the volume-integral is also zero.
Hence @ is reduced to

1 S dT P v ([ dU
Q=é_1},/f/ K((([—xll + &c.)dwdyd:-k "é;r.//fk (l(h

Both these quantities are essentially positive, and therefore the
minimum value of Q is when
AU qU 4l
U_du_du_, ®)
de — dy — e
or when U is a constant. But at the surfaces S, &e. U = 0. Hence
U = 0 everywlhere, and 7, gives the unique minimum value of @.

2
+ &e.)de Zydz. (7)

Calculation of o Superior Limit of lhe Coefficients of Capacity.
The quantity @ in its minimum form can be expressed by means
‘of Green’s theorem in terms of F1s Py, &e., the potentials of S, &,
and F,, %,, &c., the charges of these surfaces, .
Q= 3(J B+ T, 5,4+ &e.); 9)
or, making use of the coefficients of capacity and induction as defined
in Article 87,
Q=4I gu+ V2 qp+&e)+ V, V, gy +&e. (10)
The accurate determination of the coefficients 7 is in general
difficult, involving the solution of the general equation of statical
electricity, but we make use of the theorem we have proved to
determine a superior limit to the value of any of these coefficients,
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To determine a superior limit to the cocflicient of capacity T
make 7, = 1, and 7, F,, &e. each equal to zero, and then take
any function / which shall have the value 1 at §;, and the value 0
at the other surfaces.

From this trial valne of 7 calenlate @ by direct integration,
and let the value thus found be @. We know that @ is not less
than the absolute minimum value @, which in this case is § ¢, -

Hence ¢y, 18 not greater than 2 Q). (11)

If we happen to have chosen the right value of the function
7, then ¢, = 2@’, but if the function we have chosen differs
slightly from the true form, then, since @ is a minimum, @' will
still Le a close approximation to the true value.

Superior Limit of the Coefficients of Potential.

We may also determine a superior limit to the coefficients of
potential defined in Article 86 by means of the minimum value
of the quantity @ in Article 98, expressed in terms of «, 4, ¢,

By Thomson’s theorem, if within a certain region bounded by the
surfaces §,, S, &c. the quantities ¢, 6, ¢ are subject to the condition

de db  de — 0

rtate=0 (12)
and if la+mb+nc = ¢ (13)
be given all over the surface, where /, 7, n are the direction-cosines
of the normal, then the integral

1 S T
Q = é;.[/,/l( (@* 40 +c*) dedy dz (14)
is an absolute and unique minimum when
ar arv ar

When the minimum is attained @ is evidently the same quantity
which we had before.

If therefore we can find any form for a, 4, ¢ which satisfies the
condition (12) and at the same time makes

_[f’l’l‘sl = Iy, jf(j(lSz = L, &ec.; (16)

and if @” be the value of @ calculated by (14) from these values of
a, b, c, then Q" is not less than

§ (B pru+ 12° po) + Ly B, pr. (17)

9
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If we take the case in which one of the surfaces, say §,, sur-
rounds the rest at an infinite distance, we have the ordinary case
of conductors in an infinite region ; and if we make By, = — 1k, and
E =0 for all the other surfaces, we have I'; = 0 at infinity, and

. 2 QII
2 18 not greater than 7
In the very important casc in which the clectrical action is
entirely between two conducting surfaces 8 and 8, of which §,
completely surrounds 8, and is kept at potential zero, we have
by = —Eg and Mmprn=1.
Hence in this case we have

¢11 Dot less than 2—]’3,—,; (18)

and we had before gn ot greater than 2 ' ; (19)
so that we conclude that the true value of 7> the capacity of the
internal conductor, lies between these valucs,

This method of finding superior and inferior limits to the values
of these coefficients was suggested by a memoir ¢On the Theory
of Resonance,” by the Hon. J, W, Strutt, PAil. Trans., 1871. See
Art. 308.
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CHAPTER V.
MECHANICAL ACTION BETWEEN ELECTRIFIED BODIES.

103.] Let 7= C be any closed equipotential surface, C being
a particular value of a funetion 77 the form of which we suppose
known at every point of space. Let the value of /" on the outside
of this surface be 77, and on the inside 7,. Then, by Poisson’s
equation

A2V APV dEE

TiE (—/.;_7+-;-/;§+47Tp= a, (1
we can determine the density p; at every point on the outside, and
the density p, at every point on the inside of the surface. We shall
call the whole eleetrified system thus explored on the outside 77,
and that on the inside Z,. The actual value of 7™ arises from the
combined action of both these systems.

Let R be the total resultant force at any point arising from
the action of Z, and E,, I is cverywhere normal to the equi-
potential surface passing through the point.

Now let us suppose that on the equipotential surface /"= C
electricity is distributed so that at any point of the surface at
which the resultant force due to Z, and F, reckoned outwards
is 17, the surface-density is o, with the condition

R=4mno; (2)
and let us eall this superficial distribution the electrified surface 5,
then we can prove the following theorem relating to the action of
this electrified surface.

If any equipotential surface belonging to a given clectrified
system be coated with clectricity, so that at each point the surface-

density o = zijk" where I is the resultant force, duc to the original
w

clectrical system, acting outwards from that point of the surface,
then the potential due to the clectrificd surface at any point on
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the outside of that surfice will be equal to the potential at the
same point duc to that part of the original system which was on
the inside of the surface, and the potential due to the electrified
surface at any point on the inside added fo that due to the part of
the original sysiem on the outside will be equal to ¢, the potential
of the surface.

For let us alter the original system as follows :

Let us leave everything the same on the outside of the surface,
but on the inside let us make 7, everywhere equal to €, and let us
do away with the clectrified system %, on the inside of the surface,
and substitute for it a surface-density o at every point of the
surface S, such that R =4dxo. (3)

Then this new arrangement will satisfy the characteristics of 7~ at
cvery point,

Tor on the outside of the surface both the distribution of elec-
tricity and the value of /" are unaltered, therefore, since J” originally
satisfied Laplace’s equation, it will still satisfy it.

On the inside /" is constant and p zero. These values of Vandp
also satisfy the characteristic equations.

At the surface itself, if 77 is the potential at any point on the
outside and ¥, that on the inside, then, if /, m, » are the direction-
cosines of the normal to the surface reckoned outwards,

Z%+7}z%+n%:—]€=—dwa; (4)
and on the inside the derivatives of 7 vanish, so that the superficial
characteristic

ar, d7, dry  dF, av, dv,

W~ )Gy =)+ (F - %
is satisfied at cvery point of the surface.

Hence the new distribution of potential, in which it has the
old value on the outside of the surface and a constant value on
the inside, is consistent with the new distribution of electricity,
in which the electricity in the space within the surface is removed
and a distribution of electricity on the surface is substituted for
it. Also, since the original value of 7] vanishes at infinity, the
new value, which is the same outside the surface, also fulfils this
condition, and thercfore the new value of /™ is the sole and only
value of 7 helonging to the new arrangement of clectricity.

)+4mo=0 (5)

NI, - s
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On the Mechanical Action and Reaction of the Systems F, and F,,

104.] If we now suppose the equipotential surfice V' =0 to
become rigid and capable of sustaining the action of forces, we
may prove the following theorem.

If on every clement dS of an equipotential surface a force

1 . . .
T R2dS8 be made to act in the direction of the normal reckoned

outwards, where Z is the ‘clectrical resultant force’ along the
normal, then the total statical effect of these forces on the
surface considered as a rigid shell will be the same as the total
statical effect of the electrical action of the electrified system 1
outside the shell on the electrified system 7%, inside the shell, the
parts of the interior system £, being supposed rigidly connected
together.

We have seen that the action of the electrified surface in the last
theorem on any external point was equal to that of the internal
system £,, and, since action and reaction are equal and opposite,
the action of any external clectrified body on the electrified surface,
considered as a rigid system, is equal to thut on the internal system
%,. Hence the statical action of the external system %] on the
electrified surface is equal in all respects to the action of %, on the
internal system Z,.

But at any point just outside the electrified surface the resultant
force is & in a direction normal to the surface, and reckoned positive
when it acts outwards. The resultant inside the surface is zero,
therefore, by Art. 79, the resultant force acting on the element
i8S of the eleetiified surface is 320 dS8, where o is the surface-
density.

Substituting the value of o in terms of B from equation (2), and
denoting by pdS§ the resultant force on the electricity spread over
the element 5, we find

1 4,
pdS = Py e das.

This force always acts along the normal and outwards, whether
R be positive or negative, and may be considered as equal to a
pressure p= 51-7; R? acting on the surface from within, or to a tension
of the same numerical value acting from without.

* See Sir W, Thomson ¢ On the Attractions of Conducting and Non-conducting

Electrified Bodies, Cembridge Mathematical Journal, May 1843, and Reprint,
Art. VIT, § 147.
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Now Z is the resultant due to the combined action of the
external system Z and the electrification of the surface S. Hence
the effect of the pressure » on each element of the inside of {he surface
considered as a rigid body is equivalent to this combined action.

But the actions of the different parts of the surface on each other
form a system in equilibrium, therefore the effect of the pressure 2 on
the rigid shell is equivalent in all respects to the electric attraction
of I, on the shell, and this, as we have before shewn, is equivalent
to the electric attraction of Z, on %, considered as a rigid system,

If we had supposed the pressure p to act on the outside of the
shell, the resultant cffeet would have heen equal and opposite, that
is, it would have heen statically cquivalent to the action of the
internal system Z, on the external system 7.

Let us now take the case of two clectrified systems Iy and
£,, such that two equipotential surfaces I'=C, and 7 = C,, which
~ we shall call §, and 8, respectively, ean be described so that L s
exterior to §,, and §, surrounds S,, and %, lies within S,.

Then if R, and 7, represent the resultant force at any point of

S, and S, respectively, and if we make
1 .y 1
= —é—;r]?l" and p, = 8~7—r]t’22,

the mechanieal action between Z, and F, is cquivalent to that
between the shells § and 8, supposing every point of §, pressed
inwards, that is, towards 8, with a pressure p;, and every point of
8, pressed outwards, that is, towards §) with a pressure p,.

105.] According to the theory of action at a distance the action
between Z and Z, is really made up of a system of forces acting in
straight lines between the clectricity in 7, and that in %, and the
actual mechanical effect is in complete accordance with this theory.

There is, however, another point of view from which we may
cxamine the action between %, and %,. When we sce one body
acting on another at a distance, hefore we assume that the one
acts directly on the other we generally inquire whether there is
any material connexion between the two bodies, and if we find
strings, or rods, or framework of any kind, capable of accounting
for the observed action between the bodies, we prefer to explain
the action by means of the intermediate connexions, rather than
admit the notion of direct action at a distance.

Thus when two particles are connected by a straight or curved
rod, the action between the particles is always along the line joining
them, but we account for this action by means of a system of
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internal forces in the substance of the rod. The existence of these
internal forces is deduced entirely from obscrvation of the cffect
of external forces on the rod, and the internal forces themselves
arc generally assumed to be the resultants of forces which act
between particles of the rod. Thus the observed action between
two distant particles is, in this instance, removed from the class
of direct actions at a distance by referring it to the intervention
of the rod; the action of the rod is explained by the existence
of internal forces in its substance; and the internal forces are
explained by means of forces assumed to act between the particles
of which the rod is composed, that is, belween bodies at distances
which though small must be finite,

The observed action at a considerable distance is therefore ex-
plained by means of a great number of forces acting between
bodies at very small distances, for which we are as little able to
account as for the action at any distance however great.

Nevertheless, the consideration of the phenomenon, as explained
in this way, leads us to investigate the propertics of the rod, and
to form a theory of clasticity which we should have overlooked
if we had heen satisfied with the explanation by action at a distance,

106.] Let us now examine the consequence of assuming that the
action hetween electrified bodies can be explained by the inter-
mediate action of the medium between them, and let us ascertain
what properties of the medium will aceount for the observed action.

We have first to determine the internal forces in the medinm,
and afterwards to account for them if possible,

In order to determine the internal forces in any case we proceed
as follows :

Let the system 37 be in equilibrium under the action of the
system of external forces /. Divide A7 by an imaginary surface
into two parts, M, and A, and let the systems of external forces
acting on these parts respectively be F, and Ir,. Also let the
internal forces acting on 7; in consequence of its connexion with
21, be called the system 7.

Then, since A7 is in equilibrium under the action of Fy and 7,
it follows that 7 is statically equivalent to F, reversed.

In the case of the electrical action hetween two electrified systems
Zy and I,, we described two closed equipotential surfaces entircly
surrounding F, and cutting it off from 7, and we found that the
application of a certain normal pressure at every point of the inner
side of the inner surface, and on the outer side of the outer surface,
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would, if these surfaces were each rigid, act on the outer surface
with a resultant equal to that of the electrical forces on the outer
system 7, and on the inner surface with a resultant equal to that
of the electrical forces on the inner system.

Let us now consider the space between the surfaces, and let us
suppose that at every point of this space there is 4 tension in the

. . 1 . . .
direction of 2 and e¢qual to 8 £ per unit of area. This tension

will act on the two surfaces in the same way as the pressures on
the other side of the surfaces, and wil therefore account for the
action between Z and £, so far as it depends on the internal force
in the space between S, and S,.

Let us next investigate the equilibrium of a portion of the shell
hounded by these surfaces and separated from the rest by a sarface
everywhere perpendicular to the equipotential surfaces, We may
suppose this surface generated by desceribing any closed curve on
8, and drawing from every point of this curve lines of force till
they meet §,.

The figure we have to consider is therefore bounded by the two
equipotential surfaces §; and §,, and by a surface through which
there is no induction, which we may call §,.

Let us first suppose that the area of the closed curve on §, is very
small, call it S,, and that C, = C, 4 47,

The portion of space thus bounded may be regarded as an element,
of volume. If v is the normal to the cquipotential surface, and
4§ the clement of that surface, then the volume of this element
is ultimately 78 dp.

The induction through d58, is I 8, and since there is no in-
duction through S,, and no free clectricity within the space con-
sidered, the induction through the opposite surface 48, will be
cqual and opposite, considered with reference to the space within
the closed surface,

There will therefore be a quantity of electricity

el = —:117; ]fl (JSI

on the first equipotential surface, and a quantity
6, = L R,d8,
- 471 - -
on the second equipotential surface, with the condition

(.‘1 ~- c"-'-—- 0.
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Let us next consider the resultant force due to the action of the
electrified systems on these small eleetrified surfaces.

The potential within the surface S, is constunt and equal to G
and without the surface §, it is constant and equal to C,. In the
shell between these surfaces it is continuous from C, to C,.

Hence the resultant force is zero except within the shell.

The clectrified surface of the shell itself will be acted on by forces
which are the arithmetical means of the forces just within and just
without the surface, that is, in this case, since the resultant foree
outside is zero, the force acting on the superficial electrification is
one-half of the resultant force just within the surface.

Hence, if XdSdv be the total moving force resolved parallel
to &, due to the electrical action on bhoth the electrified surfaces of
the element dS dy,

X{lSdU:—%(l(], (l’ )

2 da
where the suffixes denote that the derivatives of v are to be taken

at 4§, and d8, respectively.
Let Z, m, n be the direction-cosines of 7, the normal to the

equipotential surface, then making

de = ldyv, dy=mdv, and dz = ndy,

(dV) ((lV) + (! (flll;+”l% +n%)dv+&c.;
and since ¢, = —e,, we may write the value of X
XdSdv = e, - (z a7 ‘l]’ +7 iif) dv.
But o= — ff; RdS and (Z 4 (” —_— 42 (Z/V —R;
therefore XdSdv=— Je ’[ f AL

or, if we write
1 ,, L dP|® avE: d7?
- 2 o (" iy
- 2 _87r((/‘v|+({yi+(l~ )
d]) -1 dp
dz’

o g
then A= &(Zm , = §

or the force in any direction on the elcmeut arising from the action
of the electrified system on the two electrified surfaces of the
element is equal to half the rate of increase of p in that direction
multiplied by the volume of the element.
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This result is the same if we substitute for the forces acting on
the eclectrified surfaces an imaginary force whose potential is —4p,
acting on the whole volume of the clement and soliciting it to
move so as to inerease 3 .

If we now return to the case of a figure of finite size, bounded
by the equipotential surfuces S, and §, and by the surface of no
induction §,, we may divide the whole space into elements by a
series of equipotential surfaces and two scries of surfaces of no
induction. The charges of clectricity on those faces of the elements
which are in contact will be equal and opposite, so that the total
elfeet will be that due to the electrical forees acting on the charges
on the surfaces 8, and §,, and by what we have proved this will be
{he same as the action on the whole volume of the figure due to a
system of forces whose potential is —4$ 2.

But we have already shewn that these electrical forces are
equivalent to a tension p applied at all points of the surfaces S
and §,. Ience the effeet of {his tension is to pull the figure in
the direction in which p increases.  The figure thereforc cannot be
in cquilibrium unless some other forces act on it.

Now we know that if a hydrostatic pressure 2 is applied at every
point of the surface of any closed figure, the effect is cqual to
that of a system of forces acting on the whole volume of the figure
and having a potential p. In this casc the figure is pushed in
the dircetion in which p diminishes.

We can now arrange matters so that the figure shall 'be in
equilibrium.

At every point of the two equipotential surfaces 5, and §5,, let
o tension == p be applied, and at cvery point of the surface of no
induction S, let a pressure = p he applied. These forces will keep
the figure in equilibrium.

For the tension p may be considered as a pressurc combined
with a tension 2 p.  We have then a hydrostatic pressure p acting
at every point of the surface, and a tension 2p acting on $; and 8,
only.

The effect of the tension 2p at every point of &) and &, is double
of that which we have just caleulated, that is, it is equal to that
of forces whose potential is —p acting on the whole volume of the
figure. The effect of the pressure p acting on the whole surface
is by hydrostatics equal and opposite to that of this system of
forees, and will keep the figure in equilibrium.

107.] We have now determined a system of internal forces in

LS TR AT SN f RSN
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the medium which is consistent with the phenomena so far as
we have examined them. We have found that in order to account
for the electric attraction between distant bodies without admitting
dircet action, we must assume the existence of a fewsion p at every
point of the medium in the dircction of the resultant force 2 at
that point. In order to account for the equilibrium of the medium
itself we must further suppose that in every direction perpendicular
to 2 there is a pressure p ¥,

By establishing the necessity of assuming these internal forces
in the theory of an clectric medium, we have advanced a step in
that theory which will not he lost though we should fail in
accounting for these internal forees, or in explaining the mechanism
by which they ean be maintained in air, glass, and other diclectric
media.

We have scen that the internal stresses in solid bodies can he
ascertained with precision, though the theories which account for
these stresses by means of molecular forces may still be doubtful.
In the same way we may estimate these internal electrical forces
before we are able to account for them.

In order, howover, that it may not appear as if we had no
explanation of these internal forces, we shall shew that on the
ordinary theory they must exist in a shell hounded by two equipo-
tential surfaces, and that the attractions and repulsions of the elec-
tricity on the surfaces of the shell are sufficient to aceount for them.

Let the first surface 8, be clectrified so that the surface-density is

1
(7'1 = — :]:]';' ]ﬂl’
and the second surface 8, so that the surface-density is
1

.
0'2= :l::";jl.),

2

then, if we suppose that the value of 7 is C, at every point within
8, and €, at every point outside of S,, the value of /* between these
surfaces remaining as before, the characteristic equation of 77 will
be satisfied cverywhere, and 7 is therefore the true value of the
potential,

We have already shewn that the outer and inner surfaces of the
shell will be pulled towards cach other with a force the value of
which referred to unit of surface is p, or in other words, there is a
tension 2 in the substance of the shell in the dircetion of the lines
of foree.

* Seo Faraday, Exp. Res. (1224) and (1297).
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If we now conceive the shell divided into two segments by a
surface of no induction, the two parts will experience electrical
forces the resultants of which will tend to separate the parts with
a foree equivalent to the resultant force due to a pressure p acting
on every part of the surface of no induction which divides them.

This illustration is to be taken merely as an explanation of what
is meant by the tension and pressure, not as a physical theory to
aecount for them,

108.] We have next to consider whether these internal forces
are capable of accounting for the observed clectrical forces in every
case, as well as in the ease where a closed equipotential surface can
be drawn surrounding one of the clectrified systems.

The statical theory of internal forces has been investigated by
writers on the theory of clasticity. At present we shall require only
to investigate the effect of an oblique tension or pressure on an
element of surface.

Let p be the value of a tension referred to unit of a surface to
which it is normal, and let there be no tension or pressure in any
direction normal to . Let the direction-cosines of p be Z, m, n.
Let dydz be an clement of surface normal to the axis of #, and let
the effect of the internal force be to urge the parts on the positive
side of this element with a force whose components are

Pz dy dz in the divection of z,
Pagtlydz « . . . . . 7 and
Palydz ~ . L . . Loz

From every point of the boundary of the element dy dz let lines
be drawn parallel to the direction of the tension p, forming a prism
whose axis is in the line of tension, and let this prism be cut by a
plane normal to its axis.

The area of this secetion will be /dy dz, and the whole tension
upon it will be p/dydz, and sinee there is no action on the sides
of the prism, which are normal to p, the force on the base dydz
must be equivalent to the force p/dy e acting in the direction
(¢, m, #). Hence the component in the direction of z,

Prtlydz = plidyde; or

Par = P2
Similarly Py = plm, (1)
P = pln.

If we now combine with this tension two tensions 2" and p” in
directions (', ., ') and (£”, m”, #”) respectively, we shall have
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Ver = 2)/2 —}—}/ [ - ]1” ["'.:,

dey = Pl 00w )L 2
Pey = Pl / 5

Pz =l + 27 U0 7 07 0,

In the case of the clectrical tension and pressure the pressures
are numerically equal to the tension at every point, and are in
Y oeq y point,
directions at right angles to the tension and to each other. Hence,

putting Y= =, (3)
82407 = 1, Am U+ = 0, It U0 +1'0" = 0, (1)

we find Pae = (20%5=1) p,
Py = 20mp, (5)

De: = 20np,

for the action of the combined tension and pressures.
. ] 2
Also, since p = g £%, where £ denotes the resultant foree, and
™

since Rl=X, Rim =Y, Rn =7,

1 1o ry 772
Doy = 87}' (J\ —} A ),

1 "y .
Pay = 8 2XY =p,,, (6)

I §17,— 2X7 = p..;
where X, ¥, Z are the components of R, the resultant clectromotive
foree,
The expressions for the component internal forces on surfices
normal to y and = may be written down from symmetry.

To determine the conditions of equilibrinm of the element dadydsz.

This clement is bounded by the six planes perpendicular to the
axes of coordinates passing through the points (z, 7, z) and (@ +dz,
y+dy, z4dz).

The force in the direction of z which acts on the first face dy de
18 —p,.dydz, tending to draw the clement towards the negative
side.  On the second face dydz, for which 2 has the value z+ da,
the tension ., has the value

Pextlydz4- ((;ZI 7),,) dedy dz,

and this tension tends to draw the element in the positive direction.
If we next consider the two faces dzde with respect to the
YOL, 1. K
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tangential forces urging them in the direction of z, we find the
force on the first face — p,, dz da, and that on the second

Dye e dv 4 ((;j/ Pye )z dy.
Similarly for the faces dw dy, we find that a force — Pz de dy acts
on the first face, and
P2 dy + (r[ll'/ ])z,) dz dy d:

on the second in the direction of 2.
It £dedy dz denotes the total effect of all these internal forces
acting parallel to the axis of 2 on the six faces of the element, we find

édedyd: = ((g: Pue+ (lj Pu:t (;{ p,,) dedydz;

or, denoting by £ the internal force, referred to unit of volume, and
resolved parallel to the axis of &,

d d d
= — —— ~— P 7
¢ g Vet gy Puet G Do (7)
with similar expressions for n and ¢, the component forces in the
other directions ¥,

Differentiating the values of p,,, Pyxs and p,, given in equations
(6), we find

1 X dY dZ
=g Xty + ) Q
But by Art. 77 )
(%+%+fg)=4ﬂp~ (9)
Hence E=pkX.
Similarly n=rpl, (10)
(=pl.

Thus, the resultant of the tensions and pressures which we have
supposed to act upon the surface of the element is a force whose
components arc the same as those of the force, which, in the
ordinary theory, is ascribed to the action of clectrified hodies on the
electricity within the element.

If, therefore, we admit that there is a medium in which there
is maintained at every point a tension  in the direction of the

* This investigation may be compared with that of the ‘equation of continuity
in hydrodynamics,’ and with others in which the cffect on nn element of volume
iy deduced from the values of certain quantities at its bounding surface.
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resullant electromotive force 2, and such that 7 = 87, combined
with an equal pressure » in every direction at right angles to the
resultant 7, then the mechanical effecct of these tensions and
pressures on any portion of the medium, however bounded, will be
identical with the mechanical effect of the electrical forces according
to the ordinary theory of direct action at a distance.

109.] This distribution of stress is preciscly that to which Fara-
day was led in his investigation of induction through dielectrics.
He sums up in the following words :—

“(1297) The direct inductive force, which may be conceived to
be exerted in lines between the two limiting and charged con-
ducting surfaces, is accompanied by a lateral or transverse force
equivalent to a dilatation or repulsion of these representative lines
(1224.); or the attracting force which exists amongst the par-
ticles of the dielectric in the direction of the induction is ac-
companied by a repulsive or a diverging force in the transverse
direction.

“(1298) Induction appears to consist in a certain polarized state
of the particles, into which they are thrown by the electrified body
sustaining the action, the particles assuming positive and negative
points or parts, which are symmetrically arranged with respect
to each other and the inducting swfices or particles. The state
must be a forced one, for it is originated and sustained only hy
force, and sinks to the normal or quiescent state when that force
is removed. It can be eonfinued only in insulators by the same
portion of electricity, hecause they only can retain this state of the
particles.’

This is an exact aceount of the conclusions to which we have
been conducted by our mathematical investigation. At every point
of the medium there is a state of stress such that there is tension
along the lines of force and pressure in all directions at right angles
to these lines, the numerical magnitude of the pressure being equal
to that of the tension, and hoth varying as the square of the
resultant force at the point.

The expression ‘electric tension’ has been used in various senses
by different writers. 1 ghall always use it to denote the tension
along the lines of force, which, as we have seen, varies from point
to point, and is always proportional to the square of the resultant
force at the point.

110.] The hypothesis that a state of stress of this kind exists
in a fluid dieleetric, such as air or turpentine, may at first sight

Kz



132 ELECTRIC ATTRACTION, (1171,

appear at varianee with the established principle that at any point
in a flnid the pressures in all divections are equal.  But in the
deduction of this principle from a consideration of the mobility
and equilibrium of the parts of the fluid it is taken for granted
that no action such as that which we here suppose to take place
along the lines of foree exists in the fluid. The state of stross
which we have heen studying is perfectly  consistent with the
mobility and cquilibrivm of the fluid, for we have seen that, if
any portion of the fluid is devoid of electric charge, it experi-
ences no resultant foree from the stresses on its surface, however
infense these may be. It is only when a portion of the fluid
becomes charged, that its equilibrium is disturhed by the stresses
on its surface, and we know that in this case it actually tends to
move.  Ience the supposed state of stress is not inconsistent with
the equilibrium of a fluid dieleetric.

The quantity @, which was investigated in Thomson’s theorem,
Art. 98, may be interpreted as the energy in the medium due to
the distribution of stress. Tt appears from that theorem that the
distribution of stress which satisfies the ordinary conditions also
makes @ an absolute minimum. Now when the energy is a
minimum for any configuration, that configuration is one of equi-
librium, and the equilibrium is stable. Ience {he diclectrie,
when subjected to the inductive action of clectrified bodics, will
of itself take up a state of stress distributed in the way we have
described.

It must be carefully borne in mind that we have made only one
step in the theory of the action of the medium. We have supposed
it to be in a state of stress, but we have not in any way accounted
for this stress, or explained how it is maintained. This step,
however, seems to me to be an important one, as it explains, by
the action of the consecutive parts of the medium, phenomena which
were formerly supposed to be explicable only by direet action at
a distance,

111.7 T have not heen able to make the next step, namely, to
account by mechanical considerations for these stresses in the
dicleetric. I therefore leave the theory at this point, merely
stating what are the other parts of the phenomenon of induction
in dielectrics.

I. Elcctric Displacement. When induction {akes place in a
diclectric a phenomenon takes place which is equivalent to a
displacement of electricity in the direction of the induction. For
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instance, in a Leyden jar, of which the inner coating is charged
positively and the outer coating negatively, the displacement in
the substance of the glass is from within outwards.

Any inerease of this displacement is equivalent, during the time
of increase, {o a carrent of positive clectricity from within outwards,
and any diminution of the displacement is equivalent to a current
in the opposite direction.

The whole quantity of clectrieity displaced through any area
of a surface fixed in the diclectrie is measured by the quantity which
we have already investigated (Art. 75) as the surlace-integral of

. . - 1 .. , o
induction through that arca, multiplied by :{rlx, where A is the

specific induetive capacity of the dielectrice,

IT. Superficial Electrifieation of the Particles of the Diclectrie,
Concuive any portion of the dielectric, large or small, to be separated
(in imagination) from the rest by a closed surface, then we must
suppose that on every clementary portion of this surlace there is
an cleetrification measured by the total displacement of eleetricity
through that element of surface reckoned ivuwards.

In the case of the Leyden jar of which the inner coating is
charged positively, any portion of the glass will have its inner
side charged positively and its outer side negatively. If this
portion be entirely in the interior of the glass, its superficial elec-
trification will be neutralized by the opposite electrification of the
parts in contact with it, but if it be in contact with a conducting
body which is incapable of maintaining in itself the inductive state,
the superficial clectrification will not be neutralized, hut will con-
stitute that apparent electrification which is commonly called the
Electritication of the Conductor.

The electrification therefore at the bounding surface of a con-
ductor and the surrounding diclectrie, which on the old theory
was called the cleetrification of the conductor, must be called in the
theory of induction the superficial eleetrifieation of the surrounding
diclectric.

According to this theory, all cleetrification is the residual effect
of the polarization of the dicleetric. This polarization exists
throughout the interior of the substance, but it is there neutralized
by the juxtaposition of oppositely electrified parts, so that it is only
at the surface of the dielectrie that the ellects of the clectrification
become apparent.

The theory completely accounts for the theorem of Axt, 77, that
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the total induction through a closed surface is equal to the total
quantity of cleetricity within the surface multiplied by 47, For
what we have called the induction through the surface is simply
the electrie displacement multiplied by 47, and the total displace-
ment outwards is necessarily equal to the tetal electrification within
the surface.

The theory also accounts for the impossibility of communicating
an absolute charge to matter. For every particle of the dielectric
is electrified with equal and opposite charges on its opposite sides,
if it would not he more correet to say that these electrifications are
only the manifestations of a single phenomenon, which we may call
Electrie Polarization.

A diclectric medium, when thus polarized, is the seat of electrical
energy, and the energy in unit of volume of the medium is nu-
merieally equal to the electric tension on unit of area, both quan-
tities being equal to half the product of the displacement and the
resultant electromotive foree, or

P=149C = ' k@ = *"qe
87 KL

where 2 is the eleetric tension, D the displacement, @ the cleetro-
motive force, and K the specific inductive capacity.

If the medium is not a perfect insulator, the state of constraint,
which we call ¢lectrie polarization, is continually giving way. The
medium yields to the electromotive force, the electric stress is
relaxed, and the potential energy of the state of constraint is con-
verted into heat. The rate at which this decay of the state of
polarization takes place depends on the nature of the medium.
In some kinds of glass, days or years may elapse before the polar-
ization sinks 1o half its original value. In copper, this change
may occupy less than the billiouth of a second.

We have supposed the medium after being polarized to be simply
left to itself. In the phenomenon called the electrie current the
constant passage of electricity through the medium tends to restore
the state of polarization as fast as the conductivity of the medium
allows it to deeay. Thus the external ageney which maintains the
carrent is always doing work in restoring the polarization of the
medium, which is continually hecoming relaxed, and the potential
energy of this polarization is continually becoming transformed
into heat, so that the final vesult of the energy expended in main-
tatning the current is to raise the temperature of the conductor.

R S S
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CHAPTER VL

ON POINTS AND LINES OF EQUILIBRIUM,

112.] Ir at any point of the electrie field the resultant foree is
zero, the point is called a Point of equilibrium,
If every point on a certain line is a point of equilibrium, the line
is called a Line of cquilibrium.
The conditions that a point shall be a point of equilibrium are
that at that point
av
dx —
At such a point, thercfore, the value of 77 is a maximum, or
a minimum, or is stationary, with respect to variations of the
coordinates. The potential, however, can have a maximum or a
minimum value only at a point charged with positive or with
negative electricity, or throughout a finite space bounded by a
surface electrified positively or negatively. If, therefore, a point
of equilibrium occurs in an unelectrified part of the field it must
be a stationary point, and not a maximum or a minimum,
In fact, the first condition of 2 maximum or minimumn is that

;rV A2l azy
=5 iy and Ty
da? dy* d=*
must be all negative or all positive, if they have finite values.

Now, by Laplace’s equation, at a point where there is no elec-
trification, the sum of these three quantities is zero, and thercfore
this condition cannot be fulfilled.

Instead of investigating the analytical conditions for the cases
in which the components of the foree simultancously vanish, we
shall give a general proof by means of the equipotential surfaces.

If at any point, P, there is a true maximum value of 7, then, at
all other points in the immediate neighbourhood of £, the value of
/7 is less than at . Hence 7 will he surrounded by a series of

ar

O = R
7 dy 0, dz

=0,
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closed equi potential surfaces, each outside the one before it, and at
all points of any onc of these surfaces the clectrical foree will be
directed outwards, But we have proved, in Art. 76, that the surface-
integral of the clectrical force taken over any closed surfice gives
the total clectrification within that surface multiplied by 17. Now,
in this case the force is everywhere outwards, so that the surface-
integral is nceessarily positive, and therefore there 1s positive elec-
trilication within the surface, and, since we may take the surface as
near to 2 as we please, there is positive electrification at the point 2.

In the sume way we may prove that if /" is a minimum at 2,
then 2 is negatively clectrified.

Next, let P be a point of equilibrium in a region devoid of elee-
trification, and let us describe a very small closed surface round
P, then, as we have seen, the potential at this surface eunnot, be
everywhere greater or everywhere less than at. 2. 1t must, there.
fore he greater at some parts of the surface and less at others,
These portions of the surfuce are hounded by lines in which the
potential is equal {o that at P2, Along lines drawn from £ 1o
points at which the potential is less than that at £ the electrieal
force is from P, and along lines drawn (o points of greater po-

tential the force is towards /2 Ilence the point P is a point of

stable cquilibrium for some displacements, and of uustable equili-
brium for other displacements,

1138.] To determine the number of the points and lines of equi-
librinm, let us consider the surface or surfaces for whieh the
potential is equal to €, a given quantity. Let us call the regions
in which the potential is less than ¢ the negative regions, and
those in which it is greater than ¢ the positive regions. Let,
/. be the lowest, and I'y the highest potential existing in the
electric ficld, 11 we nuke ¢ = Iy, the negative region will in-
clude only the cleetrified point or conductor of lowest potential,
and this is neeessarily eleetrified negatively.  The positive region
consists of the rest of space, and since it surrounds the negative
region it is periphractie.  See Art, 18,

It we now increase the value of ¢ the negative region will
expand, and new negative regions will he formed round negatively
eleetrified bodies.  For every negative region thus formed the
surrounding: positive region acquires one degree of periphiaxy,

As the diflerent negative regions expand, two or more of them
may meet ina point or a line. If 4+ negative regions meet,
the positive region loses u degrees of periphraxy, and the point
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or the line in which they meet is a point or line of equilibriuin
of the zth degree,

When € bheeomes equal to /7 the positive region is reduced to
the eleetrified point or conduetor of highest potential, and has
therefore lost all its periphraxy.  Hence, if cach point or line of
equilibrium counts for one, two, or 2 aceording to its degree, the
number so made up by the points or lines now considered will
he one less than the number of negatively clectrified bodies.

There are other points or lines of equilibrium which oceur where
the positive regions become scparated from each other, and the
negative region acquires periphraxy. The number of these, reck-
oned according to their degrees, is onc less than the number of
positively electrified bodies.

If we call a point or line of equilibrium positive when it is the
meeting-place of two or more positive regions, and negative when
the regions which unite there are negative, then, if there are p
bodies positively and » hodies negatively electrified, the sum of
the degrees of the positive points and lines of cquilibrium will be
»—1, and that of the negative ones 2 —1.

But, besides this definite number of points and lines of equi-
librium arvising from the junction of different regions, there may
be others, of which we can only affirm that their number must be
even.  For if, as the negative region expands, it meets itself, it
becomes a eyelie region, and it may acquire, by repeatedly meeting
itself, any number of degrees of cyclosis, each of which corresponds
to the point or line of equilibrium at which the eyclosis was
established.  As the negative region continues to expand till it
fills all space, it loses every degree of cyclosis it has acquired, and
becomes at last acyclie. Ilence there is a set of points or lines
of equilibrium at which cyclosis is lost, and these are equal in
number of degrees to those at which it is acquired,

If the form of the electrified bodies or conductors is arbitrary,
we can only assert that the number of these additional points or
lines is even, but if they are electrified points or spherical con-
ductors, the number arising in this way cannot exceed (2~ 1)(n— 2),
where 2 is the number of hodies.

114.] The potential close to any point 2 may be expanded in
the series

Fo= I+ 14 &e.
where /1y, 11, &c. are homogencous functions of », 4, =, whose
dimensions are 1, 2, &e. respectively,
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Since the first derivatives of / vanish at a point of equilibrium,
I, = 0, if P be a point of equilibrium.

Let 77, be the first function which does not vanish, then close to
the point P we may neglect all functions of higher degrees as
compared with 77,.

Now U, =0

is the equation of a cone of the degree 7, and this cone is the conc
of closest contact with the equipotential surface at 2.

It appears, therefore, that the equipotential surface passing
through 2 has, at that point, a conieal point touched by a cone
of the second or of a higher degree.

If the point P is not on a line of equilibrium this cone
does not intersect itself, but consists of ¢ sheets or some smaller
number.

If the nodal line intersects itself, then the point 2 is on a line
of equilibrium, and the equipotential surface through £ cuts itself
in that line.

If there are intersections of the nodal line not on opposite points
of the sphere, then P is at the intersection of three or more lines
of equilibrium. ~ For the equipotential surface through 2 must cut
itself in each line of equilibrium,

115.] If two sheets of the same equipotential surface intersect,
they must intersect at right angles.

For let the tangent to the line of intersection be taken as the

0 id

axis of z, then ((4]—;; = 0. Also let the axis of 2 be a tangent to .

4
o1

2}
one of the sheets, then L = 0. Tt follows from this, hy Laplace’s

dz*
2 )’
equation, that ((Ty_’ =0, or the axis of 7 is a tangent to the other

sheet,.

This investigation assumes that /7, is finite. If 1I, vanishes, let
the tangent to the line of intersection be taken as the axis of 2, and
let & = 7 cos 0, and y = 7sin 6, then, since

=V a2V drr

P o, de? T gy =03
w LT AAE s
T F a4t 2 der T

the salution of which equation in ascending powers of 7 is

I"= T4 4, rcos (04 e)+ A, 7% cos (204 a,) + &e. + A, ¥ cos (10 + a,).
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At a point of equilibrium 4, is zero. If the first term that does
not vanish is that in », then
I"'—1I'y = ;7 cos (i0+ a;)+terms in higher powers of 7.

This gives ¢ sheets of the equipotential surface /'=7",, intersecting
™ : . :
at angles each equal to <. This theorem was given by Rankine *,
[

1t is only under certain conditions that a line of equilibrium can
exist in free space, but there must be a line of equilibrium on the
surface of a conductor whenever the electrification of the conductor
is positive in one portion and negative in another.

In order that a conductor may be oppositely electrified in different

portions of its surface, there mnust be in the field some places where
the potential is higher than that of the body and others where it is
lower, We must remember that at an infinite distance the potential
is zero,

Let us begin with two conductors electrified positively to the
same potential. There will be a point of equilibrium between the
two hodies. Let the potential of the first body be gradually raised.
The point of equilibrium will approach the other hody, and as the
pracess goes on it will coincide with a point on its surface. If the
potential of the first body be now increased, the equipotential
surface round the first hody which has the same potential as the
second hody will eut the surface of the second body at right angles
in u closed curve, which is a line of equilibrium.

Lurnshaw's Theorem.

116.] An electrified body placed in a ficld of electric foree cannot
be in stable equilibrium.

First, let us suppose the electricity of the moveable body (), and
also that of the system of surrounding bodies (&8), to be fixed in
those bodies.

Let 7 be the potential at any point of the moveable hody due to
the action of the surrounding bodies (/), and let e be the electricity
on a small portion of the moveable body 4 surrounding this point.
Then the potential energy of A with respect to B will be

M = S(l'e),
where the summation is to be extended to every electrified portion
of 4.
* < Summary of the Properties of certain Stream Lines,” Phil. May., Oct. 1864,

See also, Thomson and Tait's Natwral Philosophy, § 780; and Rankine and Stokes,
in the Proc. B S, 1867, p. 468 also W, I Smith, Proe. B8, Edin., 1869-70, p. 79.
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Let «, 4, ¢ bhe the coordinates of any clectrified part of A with
respeet to axes fixed in 4, and parallel to those of @, y, 2. Let the
coordinates of the point fixed in the body through which these axes
pass be &, 3, ¢

Let us suppose for the present that the body 4 is constrained to
move, parallel to itself, then the absolute coordinates of the point
a, 0, ¢ will be

X o= £+(L, j/:q-{—b, .‘5=C+C.

The potential of the body 4 with respect to B may now he
expressed as the sum of a number of terms, in ench of which ¥
is cxpressed in terms of @, 4, ¢ and £ n, ¢ and the sum of these
terms is a function of the quantities «, 4, ¢, which are constant for
each point of the body, and of & 1, ¢, which vary when the body is
moved.

Since Laplace’s equation is satisfied by each of these terms it is
satisfied by their sum, or

M M AN
dgr T dy? + d¢E T 0-

Now let a small displacement be given to 4, so that

dE = Ldy, dy=mdr, A = ndr;

then (fil dr will be the increment of the potential of A with respect

to the surrounding system B.
If this be positive, work will have to he done to increase r, and

. (M . .
there will be a foree (—d;- tending to diminish 7 and to restore A to

its former position, and for this displacement therefore the equi-
librium will he stable. If, on the other hand, this quantity is
negative, the force will tend to increase », and the cquilibrium will
be unstable.

Now consider a sphere whose centre is the origin and whose
radius is 7, and so small that when the point fixed in the hody
lies within this sphere no part of the moveable boldy A can coincide
with any part of the external system £ Then, since within the
sphere 921/ = 0, the surface-integral

[ s =,

taken over the surface of the sphere.
. . : . (N7 .
Hence, if at any part of the surfice of the sphere ' / / 1s positive,
ar

there must be some other part of the surface where it is negative,



116.] EQUILIBRIUM ALWAYS UNSTABLE, 141

and if the body 4 be displaced in a direction in which i(//j—;” is
negative, it will tend to move from its original position, and its
equilibrium is therefore necessarily unstable.

The body therefore is unstable even when constrained to move
parallel to itself, & fortiors it is unstable when altogether free.

Now let us supposethat the body 4 is a conductor. We might,
treat this as a case of equilibrium of a system of bodies, the move-
able electricity being considered as part of that system, and we
might argue that as the system is unstable when deprived of so
many degrees of freedom by the fixture of its clectricity, it must
a fortiori he unstable when this freedom is restored to it.

But we may consider this case in a more particular way, thus—

First, let the electricity be fixed in 4, and let it move through
the small distance 7. The increment of the potential of A due to
this cause is L dr.

dr

Next, let the eleetricity be allowed to move within 4 into its
position of equilibrium, which is always stable. During this motion
the potential will necessarily be diminished by a quantity which we
may call Cdr,

Ience the total increment of the potential when the clectricity
is free to move will be

(%[ — C)(]r ;
and the force tending to bring 4 back towards its original position
will be aM
7

where C'is always positive.

dir . . . .
Now we have shewn that —— is negative for certain dirce-

dr
tions of », hence when the electricity is free to move the instability
in these directions will be inereased.



CHAPTER VIL

FORMY OF THE EQUIPOTENTIAL SURFACES AND LINES OF

INDUCTION IN SIMPLE CASES.

117.1 WE have scen that the determination of the distribution
of clectricity on the surface of conductors may be made to depend
on the solution of Laplace’s equation

S A A 0
@i T aET g =0
}" heing a function of , 4, and =, which is always finite and con-
tinuous, which wvanishes at an infinite distance, and which has
a given constant value at the surface of each conductor.

It is not in general possible by known mathematical methods
to solve this equation so as to fulfil arbitrarily given conditions,
but it is always possible to assign various forms to the funetion
¥ which shall satisfy the equation, and to determine in each case
the forms of the conducting surfaces, so that the function / shall
be the true solution.

It appears, therefore, that what we shonld naturally call the
inverse problem of determining the forms of the conductors from
the potential is more manageable than the direct problem of de-
termining the potential when the form of the conductors is given.

In fact, every clectrieal problem of which we know the solution
has been constructed by an inverse process. It is therefore of
great importance to the clectrician that he should know what
results have been obtained in this way, since the only method by
which he can expect to solve a new problem is by reducing it
to one of the cases in which a similar problem has been con-
structed by the inverse process.

This historieal knowledge of results can be turned to account in
two ways, If we are required to devise an instrument for making
clectrical measurements with the greatest accuracy, we may select
those forms for the electrified surfaces which correspond to cases
of which we know the accurate solution. 1If, on the other hand,
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we are required to estimate what will be the eleetrification of hodies
whose forms are given, we may begin with some case in which one
of the equipotential surfaces takes a form somewhat resembling the
given form, and then by a tentative method we may modify the pro-
blem till it more nearly corresponds to the given case. This method
is evidently very imperfeet considered from a mathematical point
ol view, but it is the only one we have, and if we are not allowed
to choose our conditions, we can make only an approximate cal-
culation of the clectrification, It appears, therefore, that what we
want is a knowledge of the forms of equipotential surfaces und
lines of induction in as many different cases as we can collect
together and remember.  In certain classes of cases, such as those
relating to spheres, we may proceed by mathematical methods, 1n
other cases we cannot afford to despise the humbler method of
actually drawing tentative figures on paper, and selecting that
which appears least unlike the figure we require.

This latter method I think may be of some use, even in cases in
which the exact solution has been obtained, for I find that an cye-
knowledge of the forms of the equipotential surfaces often leads to a
right selection of a mathematical method of solution.

I have therefore drawn several diagrams of systems of equipotential
surfaces and lines of force, so that the student may make himself
familiar with the forms of the lines. The methods by which such
diagrams may be drawn will be explained as we go on, as they
belong to questions of different kinds.

118.] In the first figure at the end of this volume we have the
equipotential surfaces surrounding two points electrified with quan-
tities of electricity of the same kind and in the ratio of 20 to 5.

Here each point is swrounded by a system of equipotential
surfaces which become more nearly spheres as they become smaller,
but none of them are accurately spheres. If two of these surfaces,
one surrounding cach sphere, be taken to represent the surlaces
of two conducting hodics, nearly but not quite spherical, and if
these bodies be charged with the same kind of electricity, the
charges being as 4 to 1, then the diagram will represent the
cquipotential sarfaces, provided we expunge all those which are
drawn inside the two hodies. It appears from the diagram that
the action hetween the hodies will be the same as that between
two points having the same charges, these points being not exactly
in the middle of the axis of each body, hut somewhat more remote
than the middle point from the other hody.
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The same diagram enables us to see what will be the distribution
of eleetricity on one of the oval figures, Lareer at one end than
the other, which surround both centres.  Such a body, if electrified
with a charge 25 and free from external influence, will have the
surface-density greatest at the small end, less at the large end,
and least in a eircle somewhat nearer the smaller than the larger end.

There is one equipotential surface, indicated by a dotted line,
which consists of two lobes meeting at the conical point 22, That
point is a point of equilibrium, and the surface-density on a body
of the form of this surface would be zero at this point.

The lines of force in this case form two distinet systems, divided
from one another by a surface of the sixth degree, indicated by a
dotted line, passing through the point of equilibrium, and some-
what resembling one sheet of the hyperboloid of two sheets.

This diagram may also be taken to represent the lines of force
and equipotential surfaces belonging to two spheres of gravitating
matter whose masses are as 4 to 1.

119.] In the second figure we have again two points whose
charges are as 4 to 1, but the one positive and the other negative.
In this case one of the equipotential surfaces, that, namely, corre-
sponding to potential zero, is a sphere. It is marked in the diagram
by the dotted eircle Q. The importance of this spherical surface
will be seen when we come to the theory of Eleetrical Images.

We may see from this diagram that if two round bodies are
charged with opposite kinds of clectricity they will attract each other
as much as two points having the same charges but placed some-
what nearer together than the middle points of the round badies.

Here, again, one of the equipotential surfaces, indicated hy a
dotted line, has two lobes, an inner one surrounding the point whose
charge 1s 5 and an outer one surrounding hoth bodies, the two
lobes meeting in a conical point P which is a point of equilibrium,

If the surface of a conductor is of the form of the outer lobe, ¢
roundish body having, like an apple, a conieal dimple at one end of
its axis, then, if this eonductor he clectrified, we shall be alle to
determine the superficial density at any point. That at the bottom
of the dimple will he zero. '

Surrounding this surface we have others having a rounded
dimple which flattens and finally disappears in the equipotential
surface passing through the point marked 27,

The lines of force in this diagram form two systems divided by :
surface which passes through the point of equilibrium,

ot e
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[f we consider points on the axis on the further side of the point
i, we find that the resultant foree diminishes to the double point P,
where it vanishes. It then changes sign, and reaches a maximum
al. M, after which it continually diminishes.

This maximum, however, is only a maximum relatively to other
points on the axis, for if we draw a surface perpendicular to the
axis, A/ s a peint of minimum force relatively to neighbouring
points on that surface.

120.] Figure III represents the equipotential surfaces and lines
of Torce due to an eleetrified point whose charge is 10 placed at
A, and surrounded by a field of force, which, before the intro-
duction of the electrificd point, was uniform in direction and
magnitude at every part.  In this case, those lines of force which
belong to A are contained within a surface of revolution which
has an asymptotic eylinder, having its axis parallel to the un-
disturbed lines of force.

The equipotential surfaces have each of them an asymptotic
plane, One of them, indicated by a dotted line, has a conical
point and a lobe surrounding the point 4. Those below this surface
have one sheet with a depression near the axis,  Those above have
a closed portion surrounding 4 and a separate sheet with a slight
depression near the axis,

If we take one of the surfaces below . as the surface of u con-
ductor, and another a long way below o as the surface of another
conductor at a different potential, the system of lines and surfaces
between the two eonductors will indicate the distribution of electrie
force.  1f the lower conductor is very far from A its surface will
be very nearly plane, so that we have here the solution of the
distribution of electricity on two surfaces, both of them nearly
plane and parallel to cach other, except that the upper one has
a protuberance near its middle point, which is more or less pro-
minent according {o the particular equipotential line we choose for
the surface.

121.7 TFigure IV represents the equipotential surfaces and lines
of foree due to three electrified points 4, 3 and €, the charge of A
being 15 units of positive electricity, that of 8 12 units of negative
clectricity, and that of ' 20 units of positive clectricity,  These
points are placed in one straight line, so that

Al = v, BC =16, AC = 25.

In this caxe, the surface for which the potential is unity consists
of twao spheres whose centres are o and € and their radii 15 and 20,

VOI. T, I.
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These spheres intersect in the circle which euts {he plane of the
paper in D and 2, so that 2 is the centre of this cirele and its
radins is 12, This circle is an example of a line of equilibrium, for
the resultant foree vanishes at every point of this line.

I we suppose the sphere whose centre is ./ to he a conductor
with a charge of 3 uniis of positive cleetricity, and placed under
the influence of 20 units of positive L-Ic(éh'i('iiy at €, the state of
the ease will be represented by {he diagram if we leave out all {he
lines within the spheve . The part of this spherical surface within
the small circle D27 will he negatively eleetrified by the influence
of €. All the rest of the sphere will he positively electrified, and
the small circle 1) itself will he a line of no cleot vification,

We may also consider the dingram to vepresent the eleetrification
of the sphere whose centre is ¢ charged with 8 units of positive
clectricity, and influenced by 14 units of positive electricity placed
at o,

The diagram may also be taken to represent the ease of a con-
ductor whose surface consists of the larger segments of the two
spheres meeting in D1, chargeld with 23 units of positive elee-
tricity.

We shall return to the consideration of this diagram as an
illustration of Thomson’s Theary of Eteetrical Images. See Ar. 168.

1227 I am anxious that these diagrams should he studied as
illustrations of the language of Faraday in speaking of ‘lines of
foree,” the ¢ forees of an cleetrified body,” &e.

In striet mathematical language the word Forco is used to signify
the supposed cause of the tendeney which a material body is found
to have towards alteration in its state of rest or motion, It is
indifferent whether wo speak of this observed tendency or of its
immediate cduse, since the cause is simply inferred from the effect,
and has no other evidence to support, it,

Sinee, however, we are ourselves in the practice of directing the
motion of our own bodies, and of moving other things in this way,
we have acquired a copious store of remembered sensations relating
to these actions, and therefore our ideas of foree are connected in
our minds with ideas of conscious power, of exertion, and of fatigue,
and of overcoming or yielding to pressure. These ideas, which grive
a colouring and vividuess to the purely abstract idea of furce, do
not in mathematically trained minds lead 1o any practical error,

But in the vulgar language of the time when dynamical seience
was unknown, all the words relating to exertion, such as foree,
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energy, power, &ec., were confounded with each other, though some
of the schoolmen endeavoured to introduce a greater precision into
their language.

The cultivation and popularization of correet dynamical ideas
since the time of Galileo and Newton has eflected an immense
change in the language and ideas of common life, but it is only
within recent times, and in consequence of the inereasing im-
portance of machinery, that the ideas of foree, encrgy, and power
have hecome accurately distinguished from cach other.  Very few,
however, even of scientific men, are care'ul to observe these dis-
tinctions ; hence we often hear of the foree of a eanmon-hall when
cither its energy or its momentum is meant, and of the foree of an
electrified body when the quantity of its electrification is meant.

Now the quantity of cleetricity in a body is measured, according
to Laraday’s ideas, hy the nwmber of lines of force, or rather of
induction, which proceed from it.  These lines of force must all
terminate somewhere, either on bodies in the neighbourhood, or on
the walls and roof of the room, or on the carth, or on the heavenly
bodies, and wherever they terminate there is a quantity of elec-
tricity exactly equal and opposite to that on the part of the body
from which they proceeded. By examining the diagrams this will
be scen to be the case.  There is therefore no contradiction bet veen
faraday’s views and the mathematical results of the old theory,
but, on the contrary, the idea of lines of force throws great light
on these results, and seems to afford the means of rising by a con-
tinuous process from the somewhat rigid conceptions of the old
theory to notions which may be capable of greater expansion, so
as to provide room for the increase of our knowledge by further
researches.

123.] These diagrams are constructed in the following manner : —

First, take the case of a single centre of force, a small electrified
body with a charge . The potential at a distance # is / = )L,

Al

- F \ . .
hence, il we make r = s we shall find », the radius of the sphere

for which the potential is /. If we now give to 77 the values
1, 2,3, &e., and draw the corresponding spheres, we shall obtain
a series of equipotentinl surfaces, the potentials corresponding to
which are measured by the natural numbers,  The seetions of these
spheres by a plane passing through their common centre will be
cireles, which we may mark with the number denoting the potential

I.2

-
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of each. These are indicated by the dotted circles on the right
hand of Fig. ¢.

If there be another centre of foree, we may in the same way draw
the cquipotential surfaces belonging to it, and if we now wish to
find the form of the cquipotential surfaces due to both centres
together, we must remember that it 77, be the potential due to one
centre, and /7, that due to the other, the potential due to both will he
I'y4- I'y=71". Henee, since at every intersection of the equipotential
surfuces helonging' to the two series we know both /7 and /7, we
also know the value of /. If therefore we draw a surface which
passes through all those intersections for which the value of /7 is
the same, this surface will coineide with a true equipotential surface
at all these intersections, and if the original systems of surfaces
be drawn sulliciently close, the new surface may be drawn with
any required degree of accuracy.  The equipotential surfaces due to
two points whose charges are equal and opposite are represented by
the continuous lines on the right hand side of Fig. 6.

This method may be applied to the drawing of any system of
equipotential surfuces when the potential is the sum of two po-
tentials, for which we have already drawn the cquipotential surfaces.

The lines of force due to a single centre of force are straight
lines radiating from that centre. T we wish to indicate by these
lines the intensity as well as the direction of the foree at any point,
we must draw them so that they mark out on the equipotential
surfaces portions over which the surface-integral of induction has
definite values.  The best way of doing this is to suppose our
plane figure to be the section of a figure in space formed by the
revolution of the plane figure ubout an axis passing through the
centre of force.  Any straight line radiating from the centre and
making an angle 0 with the axis will then trace out a cone,
and the surface-integral of the induction through that part of any
surface which is cut off by this cone on the side next the positive
direction of the axis, is 27 £/ (1 —cos 0).

It we further suppose this surface to be hounded by its inter-
seetion with two planes passing through the axis, and inclined at
the angle whose are is equal to hall’ the radius, then the induction
through the surfuce so hounded is

(1 —cos0) = 2 ¥, say;
and 0 = cos™! (l —2 q,:)
£

If we now give to ¥ a series of values 1, 2, 3... %, we shall find

3
J
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a corresponding series of values of 6, and if 77 be an integer, {he
number of corresponding lines of foree, including the axis, will he
caual to 7

We have therefore a method of drawing lines of force so that
the charge of any centre is indicated by the number of lines which
converge to it, and the induction through any surface cut off in the
way deseribed is measured by the number of lines of force which
pass through it.  The dotted straight lines on the left hand side
of Fig. 6 represent the lines of force due 1o each of two clectrified
points whose charges are 10 and — 10 respectively.

If there are two centres of foree on the axis of the fizure we
may draw the lines of force for each axis corresponding to values
of ¥, and ¥,, and then, by drawing lines through the consecutive
interscctions of these lines, for which the value of ¥+, is the
same, we may find the lines of force due to hoth centres, and in
the same way we may combine any two systems of lines of force
which are symmetrically situated about the same axis. The con-
tinuous curves on the left hand side of Ifg. 6 represent the lines
of force due to the two eleetrified points acting at once.

After the equipotential surfuces and lines of foree have been
construeted by this method the aceuracy of the drawing may be
tested by observing whether the two systems of lines are every-
where orthogonal, and whether the distance between consecutive
equpotential surfaces is to the distance between consceutive lines
of force as half the distance from the axis is to the assumed unit of
length.

In the ease of any such system of finite dimensions the line of
force whose index number is ¥ has an asymptote which passes
through the centre of gravity of the system, and is inclined to the

v L
o where 7 is the total
electrification of the system, provided ¥ is less than £ Lines of
force whose index is greater than % are finite lines,

The lines of force corresponding to a field of uniform force parallel
to the axis are lines parallel to the axis, the distances from the
axis being the square roots of an arithmetical series.

The theory of equipotential surfaces and lines of force in two
dimensions will he given when we come to the theory of conjugate

functions *,

axis at an angle whose eosine is 1 —2

* See a paper ‘ On the Flow of Electricity in Conducting Surfaces,” by Prof. W, R,
Smith, Proe. R, S, I2din., 1869-70, p. 79.



CIIAPTER VIII.
SIMPLE CANES OF ELECTRIFICATION,

Lwo Parallel Planes.

124.] We shall consider, in the first place, two parallel plane
conducting surfaces of infinite extent, at a distance ¢ from each
other, maintained respectively at potentials . and £.

It is manifest that in this case the potential /7 will he a function
of the distance = from the plane .4, and will be the same for all
points of any parallel plane hetween A and B, except near the
boundaries of the electrified surfaces, which by the supposition
are at an infinitely great distance from the point considered.

Hence, Laplace’s equation becomes reduced to

d*l
-’—/:T =,
the integral of which is
' = ("|+(-";::;

and since when : =0, I"'= 4, and when ¢ =¢, /"= B,
I'= Ad+(B—.)"~.
.

For all points between the planes, the resultant electrical toree
is normal to the planes, and its magnitude is
A =1

4

n

In the substance of the conductors themselves, 22 = 0. llenee
the distribution of eclectricity on the first plane has a surfuce-
density o, where A—B

Ime=R=""".
¢

On the other surface, where the potential is £, the surtace-
density o will be equal and oppesite {o o, and

B—.

¢

tane’ =N =
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Let us next consider a portion of the first surface whose area
is 8, tuken so that no part of & is near the bhoundary of the
surface.

The quantity of electricity on this surface is £ = So, and, by
Art, 79, the force acting on every unit of clectricity is 4 ./, so that
the whole force acting on the area S, and attracting it towards
the other plane, is

=1 Se = Rl 28 = S (_I_’")-
: 8 87 c*

Here the attraction is expressed in terms of the area 8, the
dillerence of potentials of the two surlfuces (of — B), and the distance
between them ¢, The attraction, expressed in terms of the charge
17, on the area 8§, 1s o

"= '5, AR

Phe electrical energy duc to the distribution of clectricity on the
arca 8, and that on an area S” on the surface /2 defined by projecting
S on the surface B by a system of lines of force, which in this case
are normals to the planes, is

Q= (I d+F B,
1 S (;l—.U)"),
"N ¢
2
= " SU,
87
9
= “‘;7 ji'l": Cy
= te.

The first of these expressions is the general expression of elec-
trical energy.

The seeond gives the energy in terms of the area, the distance,
and the dilference of potentials.

The third gives it in terms of the resultant foree £, and the
volume Se included between the arcas § and &, and shews that the
energy in unit of volume is p where 8 7y = £%.

The attraction between the planes is p8, or in other words, there
is an clectrical tension (or negative pressure) equal to g on cvery
unit of areu.

The fourth expression gives the energy in terms of the charge.

The fifth shews that the clectrical energy is equal to the work
which would be done by the electrie force if the two surfaces were
to be brought together, moving purallel to themsclves, with their
electric charges constant.
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To express the charge in terms of' the difference of potentials,
we have 1S
B = - (B d) = g (B—).
Ao
. 1S .

The coeflicient = represents the charge due to a differ-
ence of potentinals equal to unity. This coeflicient. is called the
Capacity of the surface S, due to its position relatively to the
opposite surface.

Let us now suppose that the medium between the two surfuces
is no longer air but some other dielectrie substance whose specific
inductive capacity is A, then the charge due to a given difference
of potentials will be A times as great as when the dicleetrie is air,

or , KRS
I = y m‘(/}—.‘l).
The total energy will be
AS .
Q= 8me (B~-1)%,
2w .,
= ]\S /Zl“('.

The force hetween the surfaces will he
KRS ({}—;l)z

I'=pS= 5 -
7 87 27
o
= —KS; /21".

Henee the force between two surfaces kept at given potentials
varies directly as A, the specific eapacity of the dielectric, but the
force hetween two surfaces charged with given quantities of clec-
tricity varies inversely as A’

Lo Concentric Spherical Sugfuces.

125.] Let two concentrie spherical surfaces of radii « and 4, of
which ¢ is the greater, be maintained at potentials A and £
respectively, then it is manifest that the potentinl /7 is a function
of r the distance from the centre. TIn this case, Laplace’s equation
becomes A2 dl

drt o dr T

The integral of this is
V= Ci+Crty i

and the condition that /"= A when r =, and ' = B when » =4, l‘
gives for the space hetween the spherical surfuaces,
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Ada— 1B _A—-—B 1.
a—b a~ 141 ?
dl” A—-B

—m— e, TR
dr o l—=4H71

.ll)"—-‘—

If o, o, arc the surfice-densities on the opposed surfaces of a
solid sphere of radius 4, and a spherical hollow of radius 4, then
1 A—1B 1 B—4
P S e
1f 7, and E, he the whole charges of clectricity on these surfaces,
A-B

a~l1—/41

=—I
— iy

B = drate =
Y : s . . ab
I'he capacity of the enclosed sphere is therefore PR
) — (1
If the outer surface of the shell be also spherieal and of radius ¢,
then, if there are no other conductors in the neighbourhood, the
charge on the outer surface is
E, = Be.
Henee the whole charge on the inner sphere is
ab A
F = Ad—B
‘1 b—a ( )1

and that of the outer

By f, = &f’é (B—A)+ Jie.

— L

If we put 4 =10, we have the case of a sphere in an infinite
space.  The electric capacity of such a sphere is a, or it is nu-
merically equal to its radius.

The electrie tension on the inner sphere per unit of area is

102 (A= B)?
87w a? (b—ua)?

The resultant of this tension over a hemisphere is wa*p = I
normal to the base of the hemisphere, and if this is balanced by a
surface tension exerted across the circular boundary of the hemi-

sphere, the tension on unit of length being 7, we have
P = 27l

ek

T8 =a)* T 8a¥’

y b (A=B3

T 16ma (h—a)?

=

Hence I
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If a spherical soap bubble is electrified to a potential o, then, if
its radius is «, the charge will be e, and the surface-density
will be 1
T uw

The resultant electrical foree just outside the surface will be 4rma,
and inside the bubble it is zero, so that by Art. 79 the electrical
force on unit of area of the surface will he 2702, acting outwards.
Hence the clectrification will diminish the pressure of the air
within the bubble by 274%, or

1 A2
8w a?’

But it may be shewn that if 7' is the tension which the liguid

film exerts across a line of unit length, then the pressure from

mn

within required to keep the bubble from collapsing is 2 i If the
4

electrical foree is just sufticient to keep the bubble in equilibrium
when the air within and without is at the same pressure

o

AL =16nwal

Two Lufinite Coural Cylindric Surfaces.

126.] Let the radius of the outer surface of a conducting cylinder
be 4, and let the radius of the inner surface of a hollow cylinder,
having the saume axis with the first, he 4. Let their potentials
be o and B respectively, Then, sinee the potential 7 is in this
case u function of », the distance from the axis, Laplace’s equation
hecomes

dEF1d
Er T =Y

whenee I = i+ ('_: l()g r.

Since /"= J when r =, and 7" = 8 when » = 4,

b .
Adlog - + Blog r
A «

I" =

log -
P

If o, o, are the surface-densitics on the inner and outer
surfuces,

Ad—1B B—
dme, = ) 170, = 7
« logr - b]og 2.

[ 112

R -1
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If 7, and 4, ave the charges on a portion of the two eylinders of
length 4, measured along the axis,

d— B ,
=L,

loo ~
)

Ly =2nalo, =3}

The capacity of a length ¢ of the interior eylinder is therefore
l
% —l—_,}— .
B

If the space between the eylinders is oceupied by a dielectric of
specific capacity A instead of air, then the capacity of the inner

cylinder is L LK .
)
log 2
%8,

The energy of the electrical distribution on the part of the infinite
c¢ylinder which we have considered is

[ K (A~ By

¥ 7/
log =
g o
B \
r
________{ ¢ -
| S
Fig. 5.

127.] Let there be two hollow cylindric conductors £ and 25,
Ig. 5, of indefinite length, having the axis of @ for their common
axis, one on the positive and the other on the negative side of the
origin, and separated by a short interval near the origin of co-
ordinates.

Let a hollow cylinder € of length 2/ he placed with its middle
point at a distance « on the pusitive side of the origin, so as to
extend into both the hollow cylinders,

Let the potential of the positive hollow cylinder be ., that of
the negative one B, and that of’ the internal one C, and let us put
a for the cupacity per unit of length of € with respect to ., and
A for the same quantity with respeet to 5.

The capacities of the parts of the eylinders near the origin and
near the ends of the inner cylinder will not bhe affected by the
value of @ provided a considerable length of the inner cylinder
enters each of the hollow cylinders.  Near the ends of the hollow
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cylinders, and near the ends of the inner cylinder, there will be
distributions of clectricity which we are not yet able to calculate,
but the distribution near the origin. will not be altered by the
motion of the nner eylinder provided neither of its ends comes
near the origin, and the distributions at the ends of the inner
cylinder will move with it, so that the only effeet of the motion
will be to increase or diminish the length of those parts of the
inner cylinder where the distribution is similar to that on an in-
finite cylinder.

Henee the whole energy of the system will be, so far as it depends
on a,

@=Ya(/+a)(C—A)*+ § B({—2) (C — B)? + quantitics

independent of 2
and the resultan force parallel to the axis of the eylinders will he
X = {//9‘ =4a(C—d)t =} B(C~ 1)

o
I the eylinders 4 and 73 are of equal seetion, a = 3, and
X = a(B=d) (U=} (A4 B)).

It appears, therefore, that there is a constant force acting on
the dnner cylinder tending to draw it into that one of the outer
cylinders from which its potential differs most.

If C be numerieally large and 4+ B comparatively small, then
the force is approximately  y _ , (B—A)C;
so that the difference of the potentials of the two cylinders can he
measured if we can measure X, and the delicacy of the measarement
will be increased by raising C, the potential of the inner eylinder.

This principle in a modified form is adopted in Thomson’s
Quadrant Eleetrometer, Art. 219,

The same arrangement of three cylinders may he used as a
measure of capacity by connecting B and €. If the potential of
A is zcvo, and that of 2 and C is 7, then the yuantity of clectricity
on A will be By = (4,+a (l4a) T
so that by moving € to the right till 2 hecomes @+ £ the capacity of
the eylinder € hecomes increased by the definite quantity af, where

1
a = ~—]--—--/) s
2log,
a and 4 being the radii of the opposed eylindric surfices.




CHAPTER IX.
SPHERICAT, HARMONICS.

On Singular Points at whick the Potential becomes Infinite.

1238.] We have already shewn that the potential due to a
quantity of clectricity e, condensed at a point whose coordinat es
are (n, b, ¢), 1s I'=-L:~; (0

7
where 7 is the distanee from the point («, b, ¢) to the point (e, y, =),
and /7 is the potential at the point (v, g, =)

At the point (¢, 4, ¢) the potential and all its derivatives hecome
infinite, but at every other point they are finite and continuous,
and the second derivatives of 1™ satisfy Laplace’s equation.

Henee, the value of 7, as given by cquation (1), may he the
actual value of the potential in the space outside a closed surface
surrounding the point (4, b, ¢), but we canno, except. for purely
mathematical purposes, suppose this form of the function to hold
up to and at the point («, &, ¢) itself.  For the resultant foree elose
to the point would he infinite, a condition which would necessitate
a discharge through the dielectric surrounding the point, and
besides this it would require an infinite expenditure of work to
charge a point with a finite quantity of eleetricity.

We shall call a point of this kind an infinite point of degree zero.
The potential and all its derivatives at. such a point are infinite,
but the product of the potential and the distance from the point
15 ultimately a finite quantity ¢ when the'distance is diminished
without limit. This quantity ¢ is called the ckarge of the infinite
point.

This may be shewn thus, If /7 be the potential due to other
clectrified bodies, then near the point /7 is everywhere finite, and
the whole potential is i e
I = 1’-}-;;

whence I'r=1T"r+¢.
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When 7 is indefinitely diminished 777 vemains finite, so that
ultimately I'r = e

120.7 There are other kinds of singular points, the properties of
which we shall now investigate, hut, before doing so, we must define
gome expressions which we shall find useful in emancipating our
ideas from the thraldom of systems of coordinates.

An aris is any definite direction in space.  We may suppose
it defined in Cartesian coordinates by its three direction-cosines
ly m, n, or, better still, we may suppose a mark made on the surface
of a sphere where the radius drawn /frem the centre in the direction
of the axis meets the surfice.  We may call this point the Pole
of the axis.  An axis has therefore one pole only, not two.

If through any point 2, 7, 2 a plane be drawn perpendicular to
the axis, the perpendicular from the origin on the plane is

o= led-my 4 nz. . (2)

The operation {/ o d
! = /(/.:; t Ay o A’ (3)
15 called Dufferentiation with respeet to an axis 4 whose direction-
cosines are /, m, n

Different axes are distinguished by different suflixes,

The cosine of the angle between the veetor » and any axis /;
is denoted by A;, and the vector resolved in the direction of the
axis by p;, where

ANor=lir+mytnc =p,. ()

The cosine of the angle between two axes 4, and Z; is denoted by

mi; where pij = Gl tmmey v ongn;. (3)

From these definitions it is evident, that

(//' /)l' \
t//l; = T Ay (6)
l/})j _ _ r]j/,- _
/il ih,’ (7)
dA; =N

an= T )

Now It us suppose that the potential at the point (&, g, 2) due
to a singular point of any degree placed at the origin is
My y, 2).
It such a point be placed at the extremity of the axis 4, the
potential at (r, 4, 2) will Le
M (Ce—=lh), (g =wh). (= =nh));

i
r ]
&
9
|
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and if a point in all respeets equal and of opposite sign be placed
at the origin, the potential due to the pair of points will be

I"=Mf{(x—=h), (y—mbk), (:—nh)} — ALf (2, y, 2),

_ ~ nis 1 2
=—A4 7 I'(ir, y, ) +terms containing 42,

If we now diminixh % and increase 7 without, limit, their product
M/ vemaining: constant and equal to 377, the ultimate value of Lo
potential of the pair of points will Le

. ,
, =-—ﬂl ;'///’_/<J'),7/: :)' (9)

If /' (g, =) satisfies Laplace’s equation, then 77, which is the
difference of two funetions, cach of which separately satisfies the
equation, must itself satisfy it.

I we begin with an infinite point of degree zevo, for which

E;%} (1o
we shall get for a point of the first degree
. d
Iy =—1, T
=2 = an (1
e 2

A point of the first degree may be supposed {o consist of two
points of degree zevo, having equal and opposite charges 1/, and
—,, and placed at the extremities of the axis 4. The length
of the axis is then supposed to diminish and the magnitude of the
charges to increase, so that their product 3/,4 is always equal to
M. The ultimate result of this proecss when the two points
coincide is a point of the first degree, whose moment is A, and
whose axis is 4. A point of the first degrec may therefore be
ealled a Double point,

By placing two equal and opposite points of the first degree at
the extremities of the second axis 4,, and making M by, = M, we
get by the same process a point of the second degree whose potential

15 d
==ty
y ¢

M i

= . 3=y

I I,

[

(12)
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We may call a point of the second degree a Quadruple point,
hecause it is construeted by making four points approach each
other It has two axes, 4, and fyy aud a moment Af,. The di-
rections of these fwo axes and the magnitude of {he moment com-
pletely define the nature of the point.

130.] Let us now consider an infinite point of degree / having
¢ axes, cach of which is defined by o mark on a sphere or by two
angular coordinates, and having also its moment, A, so that it is
defined by 2741 independent, quantities, TIts potential is obtained
by differentiating /, with respeet to the / axes in suceession, so
that it may be written

. ) 7 1 .
Fo= =0 (13)
The result of the operation is of the form
. , Y.

where 1, which is ealled the Surface Harmonie, is 1 function of the
7 eosines, Ay .. A of the angles between » and the ; axes, and ol the
37 (/= 1) cosines, ., &e. of the angles hetween the different axes
themselves,  Inwhat follows we shall suppose the moment )/, unity.,

Every term of 1 consists of products of {hese cosines of the form

Fuzs Bag - Moo Aueq o A

in which there are ¢ cosines of angles hetween two axes, and /1 —2
cosines of angles hetween the axes and the radius veetor,  As each
axis 1s introduced by one of the ¢ processes of diflerentiation, the
symbol of that axis must occur once and only once among the
suffixes of these cosines.

Henee inevery such product of cosines all the indices oceur
onee, and none is repeated.

The number of different products of s cosines with double suflixes,
and /— 25 cosines with single suflixes, ix

i
N = . (15)

20w iUy

For if we take any one of the .V different terms we ean form
from 1t 2* arrangements by altering the order of the sullixes of the
cosines with double suflixes. I'rom any one of these, again, we
can form s arrangements by alterirg the order of these cosines,
and from any one of these we can form i-2s arrangements by
altering the order of the cosines with single suflixes. Hence, with-
ot altering the value of the term we may write it in 2+.s  i-2s

P L T e R R T TRTE T




130.] TRIGONOMETRICAT, EXPRESSION. 161

different ways, and if we do so to all the terms, we shall obtain
the whole permutations of 7 symbols, the number of which is !i .

Let the sum of all terms of this kind be written in the ab-
breviated form (N2,

If we wish to express that a particular symbol j ocenrs among
the X’s only, or among the p’s only, we write it as a suffix to the A
or the u. Thus the equation

by ()\i—’.’n#n) =3 ()\ji—»Qn #u)+‘\_: (Ai—?n#jn) (l())
expresses that the whole system of terms may be divided into two
portions, in one of which the symbol 7 occurs among the dircetion-
cosines of the radius vector, and in the other among the cosines
of the angles between the axes.

Let us now assume that up to a certain value of 7

Yy = Ay S (V)4 4, S (02 )+ e

+4;, 2 (W) + &e (17)

This is evidently true when 7 =1 and whenz=2. We shall shew

that if it is true for 7 it is true for 74-1. We may write the series

V= 8 {4, SN, (18)

where § indicates a summation in which all values of s not. greater
than 3/ are to be taken.

Multiplying by ¢ =6+, and remembering that p;, = »A;, we
obtain by (14), for the value of the solid harmonic of negative
degree, and moment unity,

Fo=ii 8{d,, 7421 5 (pi~ ). (19)

Differentiating J] with respeet to a new axis whose symbol is
Js we should obtain J;,; with its sign reversed,

—ligy =18 {d, (28—20—1)p2r—2i=8 % () d- 241 )
+1,1‘_.A.).2n—2|'—1 2 (/}i-:!:—llija-l-l)}' (20)

If we wish to obtain the terms containing s cosines with double
suflixes we must diminish s by unity in the sceond term, and we find

— Ty = 38 {pP-t-0 g (28—27—1) 3 (pi 2w

+f1.',c-1 E(?‘i'.'(z'*.]l“j')] b.o(21)

If we now malke

/],-.‘ (28—~2i—1) = /1,»',,_1 =—(41)d; ., (22)
ﬂl(!n Ii+l —_ 1:__1‘5' {AHL‘?“_’a—Q(HI)-I s (/IH-l-Zan)}’ (23)
and this value of /7, is the same as that obtained by changing ¢

VOL. 1. M
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into 241 in the assumed expression, equation (19), for /. Hence
the assumed form of /) in equation (19), if true for any valae of 4,
15 true for the next higher value,

To find the value of Ay, put s =0 in cquation (22), and we find

2041

f],_o H (2'1)

‘Ii't-l.o =

i+ 1

and therefore, since <\, 1s unity,

and from this we obtain, by equation (22), for the general value of
the cocflicient

""t',n = (20)
and finally, the value of the trigonometrical expression for 1 is
Y=8{(~1y (=2 )}, (27)

This is the most general expression for the spherical surface-
hurmonic of degree 4. If ¢ points on a sphere are given, then, if any
other point 2 is taken on the sphere, the value of J, for the point
2 is a function of the ¢ distances of £ from the { points, and of the
$¢(¢—1) distances of the ; points from cach other. These ; puints
may be called the Poles of the spherical harmonic.  Each pole
muy be defined by two angular coordinates, so that the spherical
harmonic of degree 7 has 27 independent constants, exclusive of its
moment, 7, ,

131.] The theory of spherical harmonics was first given by
Laplace in the third hook of his Mécanique Celeste.  The harmonies
themselves are therefore often called Laplace’s Coeflicients, _

They have generally been expressed in terms of the ordinary :
spherical coordinates 9 and ¢, and contain 2741 arbit ATy con-
stants.  Gauss appears* to have had the idea of the harmonie

being: determined by the position of its poles, but T have not met :;
with any development of this ideg,

In numerieal investigations I have often heen perplexed on ac-
count of the apparent want of definiteness of the idea of a Laplace’s

Cocllicient or spherical harmonie, By conceiving it as derived by
the successive differentiation of 5 with respect to i axes, and as
expressed in terms of the positions of its 4 poles on a sphere, T

* Gauss, Ilerke, bd. v, s. 361,
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have made the conception of the general spherical harmonie of any
integral degree perfectly definite to myself, and T hope also to those
who may have fet the vagueness of some other forms of the ex-
pression,

When the poles are given, the value of the harmonic for a given
point on the sphere is a perfectly definite numerical quantity.
When the form of the funetion, however, is given, it is by no
means s0 easy to find the poles except for harmonies of the first
and sceond degrees and for pa.rtlLuLu cases of the higher degrees.

Henee, for many purposes it is desirable to express the harmonic
as the sum of a number of other harmonies, cach of which has its
axes disposed in o symmetrical manner.

Symmetrical System.

132.] The particular forms of harmonies to which it is usual to
refer all others are deduced from the general harmonic by placing
i—a of the poles at one pomt which we shall call the Positive Pole
of the sphere, and the remaining o poles at equal distances round
one halt’ of the equator.

In this case A, Ay, ... A;_, are cach of them equal to cos 0, and
Aiysr oo A are of the form sin 0 cos(p—;3).  We shall write p for
cos 0 and v for sin.

Also the value of w;p is unity if j and 5 are both less than i —o,
zero when one i greater and the other less than this quantity,

T
and cos 2 — when both are greater.
o

When all the poles are concentrated at the pole of the sphere,
the harmonie becomes a zonal harmonic for which o = 0. As the
zonal harmonic is of great importance we shall reserve for it the
symbol Q,.

We may obtain its value either from the trigonometrical ex-
pression (27), or more directly by differentiation, thus

jr .
Q=(— "l,. 5 C) (28)
_ L35, (‘.21—1){ ;=1 (1—1)(1—‘))(1—3) s_wn |
=T Es e PP T s i ypis KT
{ 12i—2n o)
B AR AP I TR VT (29)

It is often convenient to express Q; as a homogencous function of
cos 0 and sin 8, which we shall write p and » respectively,
Mg
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— i i(i"'l) -2 9 7(1—1)(’—2)(/“3) i-4,4 .
Cmpmyy e T CaLq wishe
{ [ ian ow |
= 3 (=1 iom en . :
ad “"ul( 1) 22"'", "- li___gnl"' 14 5 (30)

In this expansion the coeflicient of K 18 unity, and all the other
terms involve v.  Henee at the pole, where u=1 and »=0, @,=1.

It is shewn in treatises on Laplace’s Cocflicients that Q, is the
coeflicient of 4 in the expansion of (1 =2k 4 2%)~4,

The other harmonics of the symmetrical system are most con-
veniently ohtained by the use of the imaginary coordinates given by
Thomson and Tait, Natural Philosoply, vol. 1. p. 148,

f =+ «/:-—]‘I/, n=uxr— :T_l/ (31)

The operation of differentiating with respect to o axes in suc-

. . . k3 . .
cession, whose directions make angles — with ecach other in the
o

plane of the cquator, may then be written
e e (52)

dhy...dhy — dgs T iy
The swrface harmonic of degree 7 and type o is found by
differentiating = with respeet to 7 axes, ¢ of which are at equal

intervals in the plane of the equator, while the remaining i—o
coincide with that of 2, multiplying the result by »+1 and dividing
by (i, Hence

i+l Ji-o  ga o

Y= T G )G o
Now E7+17 = 27717 cos (a g +A), (33)
and (;il,—_u; ;%r =(—1)- {I’_—zif ;.17-4'_{7—4-_1 Sf"’- (36)
Hence Yi(”) = 2 220]": ‘rl pu Sfa) cos (r¢h 4 A3), (37)

where the factor 2 must he omitted when o — 0.
The quantity 3:0) is a fanction of 0, the value of which is given
in Thomson and Tait’s Natural Philosophy, vol. i. p. 149.
It may be derived from Q: by the equation
@ _ s .
3‘ - 2 ;‘l‘f‘(r vV;ZFQ“ (38)

where @; is expressed as a function of u only.

Ll KA
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Performing the differentiations on Q; as given in cquation (29),
we obtain

@ avs N |f.—o';¢r [21'—211 I ?
S = D e i imamm T (39)

We may also express it as a homogencous function of w and v,
(@) ow ! " i icoun . anl
= 173 —1 = PR T AL 2n s
Si l( ) 220 g (og+n L——u-—2n.# v j (“))
2|2y tmoman

In this expression the cocfficient of the first term is unity, and
the others may be written down in order by the application of
Laplace’s equation.

The following relations will be found useful in Electrodynamics.
They may he deduced at once from the expansion of Q.

[T/ ¢ PR S
PQi_Qi+1= i‘-;{:hl' 14 dp z'é”,jn ('“)
1 ,dQ; i+ 1
Qua—r @ = - e T v 3 (12)

On Solicd Harmonics of Positive Degree.

133.] We have hitherto considered the spherical surface harmonic

J; as derived from the solid harmonic
. R
"‘- = 1 -”l ;l.jfl .

This solid harmonic is a homogeneous function of the coordinates
of the negative degree —(i+1).  Its values vanish at an infinite
distance and kecome infinite at the origin.

We shall now shew that to every such function there corresponds
another which vanishes at the origin and has infinite values at an
infinite distance, and is the corresponding solid harmonic of positive
degree £

A solid harmonic in general may be defined as a homogencous
function of @, y, and z, which satisfies Laplace’s equation

a2V drl AR
prar

Let /7; be a homogencous function of the degree 7, such that

0.

]ri = I_’_ ﬂ[‘_ e }"_ - ,.'.:i+1/.‘_'. (.}3)
m ‘”[.‘_ 93 i1 ,] .:i-n(,l,{i"
,lh(,n l—/:;_.(lt—}-l)) J.'Ii+l (,J,"

211 : , g e iy AR
e (2R 1) (@1 = DB i 22 1) e

e
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Hence

A AT, R

o + h(/.l/z + o:*
dr; N

i

(D) IS SR i _ _
+2(204 1) ('L//.z' +'I///// *-”(l:

= (204 1) (204 2)r* -1,

N
e O = )

e
L=

dy*
Now, since /; is a homogencous function of negative degree /41,

dl; iy dl; . . o
T +.1/@ F 2 ds =—(+1),. {15)

The first. two terms therefore of the right hand member of
equation (41) destroy cach other, and, since /; satisfies Laplace’s
equation, the third term is zero, so that /7, also satisfies Laplace’s
equation, and is therefore a solid harmonie of degree /.

We shall next shew that the value of /7, thus derived from /; is
of the most general form.

A homogeneous function of 2, y, ¢ of degree ¢ containg

LG +1) (+2)

AT AT AR
a® 17y-’ + oz

ferms.  Buat

—-—V“" 1[.::

is & homogencous function of degree /—2, and therefore contains
$i(i=1) terms, and the condition ¢*H; = 0 requires that each of
these must vanish. There are therefore 4 /(7 —1) equations between
the coeflicients of the 4 (/41)(/+2) terms of the homogencons
funetion, leaving 2741 independent constants in the most general
form of J/;. ‘

But we have secen that 7, has 2741 independent constants,
therefore the value of 77, is of the most general form.

Application of Solid Ilurmonics tv the Theory of Flectrified Spheres.

134.] The function /] satisfies the condition of vanishing at.
infinity, but does not satisfly the econdition of heing everywhere
finite, for it beeomes infinite at the origin,

The function /7; satisfies the condition of heing finite and con-
tinuous at finite distances from the origin, but does not satisfy the
condition of vanishing at an infinite distance,

But if we determine a closed surtace from the equation

I =11, (16)

and make /7, the potential Tunction within the closed surface and
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7; the potential outside it, then by making the surface-density o
satisfy the characteristic equation

dif,  dJ;

——= — = tine =10, (47)
we shall have a distribution of potential which satisfies all the
conditions,

It is manifest that if 77, and 7] ave derived from the same value
of ¥,, the surface //, = J; will be a spherical surface, and the
surface-density will alo he derived from the same value of 1.

Liet « he the radius of the sphere, and let

- w1 .
I, = ArY;,, | = _B;ﬁ'—l’ c=CY, (18)

Then at the surface of the sphere, where r = «,

I

Joab —
‘[(L = {l""”

md AV dIl A
ane D e g .
2 dr 75
, B ,
or ("+1){Ti;‘: +iai'Ad = 47
whenee we find 77, and 7; in terms of G,
i AnC ait?
SRS TR NSRS ot (49)
Y B e 2 LA

We have now obtained an clectrified system in which the potential
is everywhere finite and continuous. Thix system consists of a
spherical surface of radius 4, electrified so that the surface-density
is everywhere €17, where C is some constant density and J;is a
surface harmonic of degree 7. The potential inside this sphere,
arising from this electrification, is everywhere /7;, and the potential
outside the sphere is /;.

These values of the potential within and without the sphere
might have been obtained in any given case by direet integration,
but the labour wonld have bren great and the result applicable only

to the particular case.

135.] We shall next consider the action between a spherieal
surface, rigidly electrified aceording to a spherical harmonie, and
an external electrified system which we shall eall 72,

Let T” be the potential at any point due to the system Z, and

I that due to the spherical surface whose surface-density is .
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Then, by Green’s thicorem, the
» by

potential energy of 7 on the
clectrified surface is equal to th

at of the cleetrified surface on £, or

/:/‘/"o a8 = ST 4} (50)

where the first integration is to be extended over every element. (/.8
of the surface of the sphere, and the summation ¥ e to be extended
to every part @ £ of which {he clectrified system 4 is com posed.,

But the same potential function 7] muy he produced by means
of a combination of 9 clectrified points in {he manner already
described.  Let us therefore find the potential energy of £ on
such a compound point,

1t A4, 1s the charge of a single

point of degree zero, then 37 4
is the potential energy of /7 on that point, E
If there are two such puints, a positive and negative one, at E
the positive and negative ends of a line £, then the potential energy i
of £ on the double point wil] he g
ar e dF 7Er . L
—~ 4 4 = A L&) i
1+ /“(’”H//,, +44 i TEe);
und when 1/, inereases and 4, diminishes indefinitely, but so that [:
Myhy = 1, :
the value of the potential energy will be for 4 point of the first degree 2
A iig

T dhy

2R

ST

Similarly for a point of degree ¢ the
to £ will be di)

Yy i dhy

potential energy with respect.

o

.
¥
&

1

r s 3 . vy R

Chis is the value of the potential encrgy of # upon the singular
pomnt of degree i, Phat of the singular point on 7 ig SIIdE, and,
by Green’s theorem, these are equal.  Henee, by equation (50,

e dir
././/‘”]‘5 = dhy . db,

Mo =), where ¢

I5 a4 constant quantity, then, by equations
(19) and (1),

. r [
At (51)
o241

Henee, it 1 g any potential function whagey

er which satisties
Laplace's equation within the =pherical

surface of radius «, then the
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integral of /'Y;d8, extended over every element /8 of the surface
ol a sphere of radius «, is given by the equation
ffm’,«zs: tw oetE dE (52)
320 Ly L iy
where the differentiations of /7 are taken with respect to the axes
of the harmonie Vi, and the value of the differential coeflicient is
that at the centre of the sphere.

136.] Let us now suppose that /7 is a solid harmonic of positive

degree J of the form Y,
I'= =Y, (53)
«’

At the spherieal surface, r = «, the value of /7 is the surface har-
monic 17, and equation (52) hecomes

e imjtd Jifpi)

[[rovas =7 3 @
J, b2 1o dh;
where the value of the dilferential coeflicient is that at the centre
of the sphere.

When / is numerically different from J, the surface-integral of
the product ¥, F; vanishes.  For, when / is less than j, the result
of the diffegentiation in the sccond member of (5+4) is a homogencous
function of ., g, and 2, of degree j—i, the value of which at the
centre of the sphere 1s zevo, 11 4 is equal to / the result is a constant,
the value of which will be determined in the next article. It the
ditlerentiation is carried further, the result is zero. Ilence the
surface-integral vanishes when ¢ 1s greater than /.

137.] The most important case is that in which the harmonic
1 is diflerentiated with respect to ¢ new axes in suceession, the
numerical value of 7 being the same as that of £, but the directions
of the axes heing in general diflerent,  The final result in this case
is u constant quantity, cach term being the product of ¢ cosines of
angles between the different axes taken in pairs. The general
form of such a product may be written symbolically

His" 1 e
which indieates that there are s cosines of angles hetween pairs of
axes of the first system and s between axes of the seeond system,
the remaining /—2s cosines being between axes one of which
belongs to the first and the other to the second system.

In each product the suffix of every one of the 2/ axes occurs

once, and once only.
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The number of different, products for a given value of « 1s

T (35)

/
\
2'—“'( S)2 i-2s

.’\. =

The final result, iy casily obtained by the suceessive differen-

tiation of
. 1 . 2J—2s i e a
7 b= L s {(— 1) 5 ,.'j'_“\."' I (p/ ""#)}'

Diflerentiating this / fimes In succession with respeet 1o the new
axes, so as to obiain any given combination of the axes in pairs,
we find that in differentiating 1% \vith respect 1o s of the new axes,
which are to he combined with other axes of the new svstem, we
introduce {he numerical factor 2¢ (2s—2)... 2, or 24s. In con-
tinuing the differentiafion the 4's become converted into s, hut.
o mumerical factor is introduced. Henee

o
dhy . odh,

Substituting this result in equation (51) we find for the value of
the surface-integral of the product of two surfice harmonies of the
sime degree, {aken over the surface of a sphere of radiug a,

| 2i=2s s - 9
= :'1— ‘S {(_ ]). 2;“—21’!— _;‘;- ‘\" (/‘iilll.,‘jﬂl.l‘-j. ")} . (-)())

Q" - '1"—"'1: n':);_zs s » A I3 LY gl
././)"}f’/‘g:(z;+ S Y 5 S ) )

This quantity differs from zero only when the two harmonies are
of the same degree, and even in this case, when the distribution of
the axes of the one svstem hears a certain relation to 4o distribution
of the axes of the other, this integral vanishes,  In this case, the
two harmonies are said {o he conjugate to cach other.

O Conjugate Harmonivs.

138.] If one harmonic s given, the condition that g second
harmonie of the same degree may he conjugate to it is expressed
by equating the right hand side of equation (57) 1o zero.

Ifa third harmonie is {0 ho found conjugate 1o hoth of these
there will be two equations which must he satisfied hy its 24
variables,

If we go on constructing new harmonics, cach of which is con-
Jugate to all the former harmonies, the variables will he continually
more and more vestriefed, til] at last the (2/ 4 Dth harmonic will
Bave all its variahlos determined by the 2/ equations, which must,




139.] CONJUGATE ITARMONICS, 171

he satisfied in order that it may be conjugate to the 2/ preceding
harmonics,

Henee a system of 2/4 1 harmonics of degree i may he con-
structed, cach of which is conjugate to all the rest. Any other
harmonic of the same degree may be expressed as the sum of {his
system of conjugate harmonies cach multiplied by a coeflicient.

The system deseribed in Art. 132, consisting of 2741 har-
monics symmetrieal about a single axis, of which the fivst is zonal,
the next /—1 pairs tesseral, and the last pair sectorial, is a par-
ticular ecase of a system of 2741 harmonies, all of which are
conjugate to ceach other.  Siv 'W. Thomson has shewn how to
express the conditions that 2741 perfectly g@eneral harmonies,
cach of which, however, is expressed as a linear function of the
2/ 41 harmounies of this symmetrieal system, may he conjugate
to cach other, These conditions consist of /(274 1) linear equa-
tions conneeting the (274 1) coeflicients which enfer into the
expressions of the general harmonies in terms of the symmetrical
harmaonies,

Professor Cliffind has also shewn how to form a conjugate system
of 2741 scctorial harmonies having different poles,

Both these results were communicated to the British Association
in 1871,

139.] 1f we take for F; the zomal harmonic ), we obtain a
remarkable form of equution (57).

In this case all the axes of the second system eoineide with each
other,

The coxines of the form p;; will assume the form A where A is the
cosine of the angle hetween the common axis of @ and an axis of

the first system.

The cosines of the form u;; will all hecome equal to unity.

The number of combinations of s symbols, cach of which is
distinguished by two out of 7 suffixes, no suflix being repeated, is

i
N=_ - ; 58
2 s =28’ (58)
and when each combination is equal to unity this number represents
the sum of the products of the cosines u;;, or X (p; ).
The number of permutations of the remaining /— 2y symbals of

the second set of axes taken all tooether is 7—=2s.  IHence
tal PO
Sy ) = i IA (39)

Lquation (57) therefore becomes, when F; is the zonal harmonie,

TR s SR et
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- g PR A , , i2i—2y¢ i
// V@ ds= @ity Y= b iy (AP}
tra® | i
= 2[_}_] )i(j); (()())

where ;) denotes the value of ¥, in equation (27) at the common
pole of 4ll the axes of Q.

140.] This result is a very important one in the theory of
spherical harmonies, as it leads to the determination of the form
of'a series of spherical harmonics, which expresses o function having
any arbitrarily assigned value at cach point of a spherical surfuce,

For let # be the value of the function at any given point of the
sphere, say at the centre of gravity of the clement of surface S,
and let Q; be the zonal harmonic of degree 4 whose pole is the point
£ on the sphere, then the surface-integral

[[#0.as

extended over the spherical surface will be a spherical harmonic
of degree 7, hecause it s the sum of a number of zonga) harmonies
whose poles are the various elements o8, cach being multiplied by
IS, Hence, if we make

~

FRASRS / /'_1"(3,4 (s, (61)

daa¥,
we may expand /' in the form

P= A0 Y, 4 e, 1, (52)
or

r=, n’;‘,_, -U]J"QU 4843 /.‘/;/r'(gl dS+&e. 4 (24 1 )._/'/‘Jr'(g,. 78] (63)

This is the celebrated formula of Laplace for the expansion in
a series of spherical harmonjos of any quantity distributed over
the surfuce of a sphere. In making use of it we are supposed fo
take a certain point 7 on the sphere as the pole of the zonal
harmonic Q;, and to find the surface-integral

//1 Q.dS

LY

over the whole surface of the spheve. The result of this vperation
when multiplied by 2/ 4 1 gives the value of A ¥ at the point 2,
and by making 2 travel over the surface of the sphere the value of
AV at any other point may be found,
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But 4,1, is a genceral surface harmonie of degree 7, and we wish
to break it up into the sum of a series of multiples of the 2741
conjugate harmonies of that degree.

Let 77 be one of these conjugate harmonices of a partienlar type,
and let 13, 72 be the part of A, 1; belonging to this type.

We must first find c
M= |[rnis, (64)

which may he done by means of equation (57), making the second
set of poles the same, each to each, as the first set.

We may then find the coeflicient B; from the equation

'1'i. ‘ / P RAas. (65)

For suppose /" expanded in terms of spherical harmonies, and let
B; 15 be any term of this expansion.  Then, if the degree of 7} 1is
diferent, from that of 2, or if, the degree being the same, ]f i
conjugate to 7}, the result of the surface-integration is zero. Hence
the result of the surface-integration is to select the coefficient of the
harmonice of the same type as 2.

The most remarkable example of the actual development of a
function in a scries of spherical harmonies is the ealeulation by
Gauss of the harmonics of the first four degrees in the expansion
of the magnetie potential of the earth, as deduced from observations
in various parts of the world.

He has determined the twenty-four coeflicients of the three
conjugate harmonics of the first degree, the five of the second,
seven of the third, and nine of the fourth, all of the symmetrical
system. The method of ealeulation is given in his Generel Theory
of Terrestrial Magnetism.

141.] When the harmonie 2; belongs to the symmetrical system
we may determine the surface-integral of its square extended over
the sphere by the following method.

The value of #* ¥,7 is, by equations (31) and (36),
lito

i)y — N ol L el bt ) BPIIPOR
7)1 _261.” (E +7))(‘~' . ‘I((r-{-l) ~ é‘”,&c-))
and by equations (33) and (54),

N 17 a* di-e . d° i .
NS = L e — 4 =Y (r. Y oY,
-/./(}' Jul§ = (3 2041 dzi-° ((l{-"’ t //1;“) (r: 1)

Performing the differentiations, we find that the only terms
which do not disappear are those which contain -9, Hence
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T ) 8wu* I'L'-r(r i— s
FLOTYA S P 66
// (Yfon248 Bl o i i (6G)
except when o = 0, in which case we have, by equation (60),
n 17 a* :
Q) dS = 27, G7)
//( %) 2041 (

These expressions give the value of the surlace-integral of the
square ol'any surface harmonie of the symmetrical system,
We may deduce from this the value of the integral of the square
of the fanction 4, wiven in Art, 132,
RS D %0 i 2
/ ”(S;("’)Qliu=r;-2~— 27 za(jo ) (68)
N 2041 Lt

This value is identical with that given by Thomson and Tait, and is
true without exception for the cise in which o = 0,

142.] The spherical harmonics which I have deseribed are those
of integral degrees. To enter on the consideration of harmonices
of fractional, ireational, or impossible degrees is beyond my parpose,
which is to give as elear an idea as I can of what these harmonies
are. 1 have done so by referring the harmonie, not to a system
of polur coordinates of lutitude and longitude, or to Cartesian
coordinates, but to a number of points on the sphere, which I
have called the Poles of the harmonie.  Whatever he the type
of & harmonie of the degree 4, it is always mathematically possible
to find / points on the sphere which are its poles.  The actual
aleulation of the position of these poles would in general involve
the solution of a system of 2/ cquations of the degree /. The
coneeption of the general harmonie, with its poles placed in any
manner on the sphere, is uselul ratler in fixing our ideas than in
making caleulations,  For {he latter purpose it is more convenient
to consider the harmonic as the sun of 2041 conjugate harmonies
of selected types, and {he ordinary symmetrical system, in which
polar coordinates are used, is the most convenient.  In this system
the first type is the zonal harmonic @, in which all the axes
coineide with the axis of polar coordinates, The second type is
that in which /—1 of the poles of the harmonic coincide at the pole
of the sphere, and the remaining one is on the equator at the origin
of longitude. In the third type the remaining pole is at 00° of
longitude.

In the same way the type in which i—¢ poles coincide at the
pole of the sphere, and the remaining o are placed with their axes
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. ™ . . .
at cqual intervals -~ round the equator, is the type 26, if one of the
[

poles 1s at the origin of longitude, or the type 2041 if it is at
longitude 210

143.] It appears from cquation (60) that it is always possible
to express a harmonie as the sum of a system of zonal harmonics
of the same degree, having their poles distributed over the surface
of the sphere.  The simplification of this system, however, does not
appear casy. I have however, for the sake of exhibiting to the
eye some of the features of spherieal harmonies, caleulated the zonal
harmounies of the third and fourth degrees, and drawn, by the
method already deseribed for the addition of funetions, the equi-
potential lines on the sphere for harmonics which are the sums of
two zonal harmonics.  Sce Figures VI to IX at the end of this
volume.

Fig. VI represents the sum of two zonal harmonics of the third
degree whose axes are inclined 120° in the plane of the paper, and
the sum is the harmonic of the second type in which ¢ = 1, the axis
being perpendicular to the paper.

In Iig. VII the harmonic is also of the third degree, but the
axes of the zonal harmonies of which it is the sum are inclined
907, and the result is not of any type of the symmetrical system.
One of the nodal lines is a great circle, hut the other two which are
intersected by it are not circles.

Iig. VIIT represents the difterence of two zonal harmonies of
the fourth degree whose axes are at right angles.  The result i a
tesseral harmonie for which [ = 4, o = 2.

Fig. IX represents the sum ol the same zonal harmonies. The
result gives some notion of one type of the more general har-
monic of the fourth degree. In this type the nodal line on the
sphere consists of six ovals not intersecting cach other, Within
these ovals the harmonic is positive, and in the sextuply connected
part of the spherical surface which lies outside the ovals, the har-
monic is negative.

All these figures are orthogonal projections of the spherical
surfuce.

I have also drawn in Fig. V a plane seetion through the axis
of a sphere, to shew the equipotential surfaces and lines of foree
due to a spherical surface electrified nccording to the values of a
spherical harmonic of the first degrec.
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Within the sphere the equipotential surfaces are equidistant
planes, and the lines of foree are straight lines parallel to the axis,
their distances from the axis bheing as the square roots of the
natuwral numbers.  The lines outside the sphere may be taken as a
represenfalion of those which would be due to the earth’s magnetism
if it were distributed aceording to the most simple type.

144.] Tt appears from equation (52), by making /= 0, that if
/™ satisfies Laplace’s equation thronghout the space oecupied by a
sphere of radius «, then the integral

a o

//1"1]:5' = Aza*l, (69)

where the integral is taken over the surface of the sphere, /8 being
an element of that surface, and /7, is the value of /7 at the centre
of the sphere.  This theorem may be thus expressed.

The value of the potential at the centre of a gphere is the mean
value of the potential for all points of ils surface, provided the
potential be due to an eleetrified system, no part of which is within
the sphere,

It follows from this that if /™ satisfies Laplace’s equation throngh-
out a certain continuous region of space, and if, thronghout a
finite portion, however small, of that space, 7™is eonstant, it will
be eonstant throughout the whole continuous region.

If not, let the space throughout which the potentinl has a
constant value €' be separated by a surface § from the rest of
the region in which its values differ from C, then it will always
be possible to find a finite portion of space touching § and out-
side of it in which /7is either everywhere greater or everywhere
less than C.

Now deseribe a sphere with its centre within S, and with part
of its surface outside S, but in a region throughout which the value
of /™ is everywhere greater or everywhere less than (',

Then the mean value of the potential over the surface of the
sphere will he greater than its value at the centre in the first case
and less in the second, and therefore Laplace’s equation cannot
he satisfied throughout the space occupied by the sphere, contrary
to our hypothesis. It follows from this that if 7'=C throughout
any portion of a connected region, /"= throughout the whole
of the region which can be reached in any way by a hody o1
finite size without, passing through electrified matter. (We sup-
pose the hody to he of linite size beecause a region in which /7 is
constant. may he separated from another region in which it is
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variable by an electrified surface, certain points or lines of which
are not electrified, so that a mere point might pass out of the
region through onc of these points or lines without passing
through clectrified matter.) This remarkable theorem is due to
Gauss.  See Thomson and Tait’s Nalural Philosoply, § 197.

It may be shewn in the same way that if throughout any finite
portion of space the potential has a value which can be expressed
by a continuous mathematical formula satisfying Laplace’s equation,
the potential will be expressed by the same formula throughout
every part of space which can be reached without passing through
clectrified matter,

Tor if in any part of this space the value of the function is 77,
different from 7', that given by the mathematical formula, then,
since hoth /™ and 7" satisfy Laplace’s equation, U/ = ¥'—F does.
But within a finite portion of the space U = 0, therefore by what
we have proved U= 0 throughout the whole space, or //=1",

145.] Let }; be a spherical harmonie of ¢ degrees and of any
type. Let any line be taken as the axis of the sphere, and let the
harmonie be turned into » positions round the axis, the angular
distance hetween consecutive positions being ‘—2;;

If we take the sum of the 2 harmonics thus formed the result
will be a harmonie of 7 degrees, which is a function of 8 and of the
sines and cosines of % ¢,

If 7 is less than 7 the result will be compounded of harmonies for
which s is zero or a multiple of # less than /, but if # is greater
than / the result is a zonal harmonie. Hence the following theorem :

Let any point be taken on the general harmonie 17, and let a
small circle be described with this point for centre and radius 0,
and let- # points he taken at equal distances round this cirele, then
il Q; is the value of the zonal harmonic for an angle 0, and if 37 is
the value of 2, at the centre of the circle, then the mean of the
2 values of 17 round the circle is equal to Q; 77 provided # is greater
than 7.

If » is greater than 74 s, and if the value of the harmonic at
cach point of the circle be multiplied by sinsg or cos s¢p where
s is less than 7, and the arithmetical mean of these products be
Ay, then if 37 is the value of 2, for the angle 6, the coefficient
of sins¢ or cos s in the expansion of ¥; will be

(5)
24, gu

i

VOL, 1. N




e S T

178 SPHERICAL HARMONICS, [ 146.

In this way we may analyse ¥; into its component conjugate
harmonies by means of a finite number of ascertained values at
selected points on the sphere.

Application of Spherical Harmonic dAnalysis to the Determination
of the Distribution of Blectricity on Spherical and newrly Spherical
Conductors under the Action of known External Electrical Forces.

146.] We shall suppose that every part of the eleetrified system
which acts on the conductor is at a greater distance from the
centre of the conductor than the most distant part of the conductor
itself, or, if the conductor is spherical, than the radius of the
sphere.

Then the potential of the external system, at points within this
distance, may be expanded in a series of solid harmonies of positive
degree V= dy+dyr};+&e + 4, ¥, 7, (70)

The potential due to the conductor at points outside it may be
expanded in a series of solid harmonics of the same type, but of
negative degree

1/'=.B(,71.+1;11’,712-+&e.+3,)’,.r-‘lﬁ- (1)
At the surface of the conductor the potential is eonstant and
equal, say, to C. Let us first suppose the conductor spherical and
of radius @.  Then putting » = «, we have U+ V=¢, or, equating
the coeflicients of the different degrees,
B, = «(C—4,),
By, =—d34,, (72)
_B‘ = — it A‘-.

The total charge of electricity on the conductor is B,.

The surface-density at any point of the sphere may be found
from the equation
ar JdUu

4 =
e dr dr

= g;l—saum-n—-&c.—(ml)a""*‘ffaf’s- (73)

Distribution of Electricity on a nearly Spherical Conductor.

Let the equation of the surface of the conductor be
r=a(l+4+F), (74)
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where 7 is a function of the dircetion of », and is a numerical
quantity the square of which may be neglected.

Let the potential due to the external electrified system be ex-
pressed, as before, in a series of solid harmonics of positive degree,
and let the potential U be a series of solid harmonics of negative
degree.  Then the potentinl at the surface of the conductor is
obtained by substituting the value of » from cquation (74) in these
series,

Hence, if € is the value of the potential of the conductor and
B, the charge upon it,

C=Ad,+4,aY ... +4,a1,,
+dyaF'Y 4 .. +idat FY,

1 1 . .
-}-BU;; +'Bla—'~’ Yi+...+B;a=G VY, 4. .+ BjaI*Y,

1 . . ; ,
—BOZI(,—ZBHZI:: FY 4. —@E+1)Ba= O FY
o= (JH ) Bjam UV FY | (75)
Since ¥ is very small compared with unity, we have first a set
of equations of the form (72), with the additional equation

0=—0 (lb F43d4,a Y, +&e. +(i41) 4 a FY,
+E(B;a~UNY) =X ((f+ 1) Bja~U*V L)), (76)
To solve this equation we must expand #, £, ... FY, in terms of
spherical harmonics. If # can be expanded in terms of spherical
harmonics of degrees lower than £, then /) can be expanded in
spherical harmonics of degrees lower than T4 A
Let therefore

Byl Bos el - 20k ) A FY=S (B0, (77)

then the coefficients B3; will each of them be small compared with
the cocfficients B, ... B; on account of the smallness of 2, and
therelore the last term of equation (76), consisting of terms in 5,4}
may be neglected.
Hence the coeflicients of the form B; may be found by expanding
equation (76) in spherical harmonies.
or example, let the body have a charge B, and be acted on by
no external force.
Let # be expanded in a scries of the form
F=38 ¥ +&.+8.1,. (78)
Then ])",31 8,1, + &e. + ];(,53,‘);_, = S(B,a-0DY), (79)
N2
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or the potential at any point outside the body is

2 E+1
V=25, + ASh+ o+ ST (80)
and if o is the surface-density at any point
AM0 = — il—[-/:
dr
or dnac = By(14+8,X,+...+ (A=1)8,.1)). (81)

Hence, if the surface differs from that of a sphere by a thin
stratum whose depth varies according to the values of a spherieal
harmonic of degree £, the ratio of the difference of the superficial
densities at any two points to their sum will be 4—1 times the
ratio of the difference of the radii of the same two points to their
sum.




CHAPTER X.

CONFOCAL QUADRIC SURFACES™.

147.] Let the general equation of a confocal system be
2 e 2%
v—ate—ptE—as " M
where A is a variable parameter, which we shall distinguish by the
suffix A, for the hyperholoids of two sheets, A, for the hyperboloids
of one sheet, and A, for the ellipsoids.  The quantities
a, Al’ b, }\2, c, A(}

are in ascending order of magnitude. The quantity « is introduced
for the sake of symmetry, but in our results we shall always suppose
a=0,

If we consider the three surfaces whose parameters are Ay, Ag, Ag,
we find, by climination between their equations, that the value of
2% at their point of intersection satisfies the equation

w? (B —a?) (¢*—a?) = (A2 —a?) (A2 —a®) (A2 —a?). (2)
The values of 7* and 2* may be found by transposing &, 4, ¢
symmetrically.

Differentiating this equation with respect to A;, we find

dx Mo (3)

iy = A2 —a?
If ds, is the length of the intereept of the curve of intersection of
2, and A, cut off between the surfaces A, and A; + @A, then

W& AT G AEAEEA) =AY g
dAy ] T dN dn| AN T (P —a?) (A2 —=02) (A2 —c?)

* "This investigation is chiefly borrowed from n very intercsting work,—Legona sur
les Fonctiona Inverses des Transcendantes ct les Surfaces Isothermes. Par G. Lamé.
Paris, 1857.
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The denominator of this fraction is the product of the squares of
the semi-axes of the surface A,.
If we put
D = NP=AE D2 = NE—N2, and DP = 22—03 (5)
and if we make « = 0, then

ds, ]_)., n, (6)

AN T e Az et 2N
It is easy to see that /), and D, are the semi-axes of the central
section of A; which is conjugate to the diameter passing through
the given point, and that 1, is parallel to &s,, and D, to ds,.
If we also substitute for the three parameters Aj, Ay, A, their
values in terms of three functions «, g, y, defined by the equations

da ¢

—— = e M=0vwhma=0

Ay \/bz~/\lz et — A 1 !

s ¢

T e , = b when B =0 (7)
dhy ~ INE 02N NG ’ Ay B )

(Z‘y [

Ay = ¢ when y =0;

dng, VAFZE N —
then ds; = " ])2 Dyda, ds, = %]);i Ddp, ds,= %])1 Dydy. (8)

148.7 Now let /" be the potential at any point a, 3, y, then the
resultant force in the direction of /s, is

dl dV da dV e
T e IR e e o ER e oo e 9
iy ds, da ds, da D, D, ©)

Since ds;, ds,, and ds, are at right angles to each other, the
surfuce-integral over the element of aren ds, ds, is

, &V ¢ DD, D])
Byduy sy =ty 0 T g dy

dl ]) 2
— 10
== -dBdy. (10)

Now consider the clemenb of volume intercepted between the
surfaces a, 8,7y, and a+da, B+dB3, y+dy. There will be eight
such elements, one in each octant of space.

We have found the surface-integral for the element of surface
intercepted from the surface a by the surfaces 8 and ,8 +dB, y and
y+dy.
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The surface-integral for the corresponding element of the surface
a-+da will be
ar D? . dET D2
P dBdy + e ladBdy
since /), is independent of a.  The surface-integral for the two
opposite faces of the clement of volume, taken with respect to the
interior of that volume, will be the difference of these uantities, or
A2V Dy? .
TE e dadB dy.
Similarly the surface-integrals for the other two pairs of forces

will be
AV D,? AT AN )
—— 2 dad o - 8 13 dy.
JEE e dadBdy and e dadpdy
These six faces enclose an element whose volume 18
ds, ds,dsy = 1—)‘-“—[?{-1)—’_ dadBdy,

4

and if p is the volume-density within that clement, we {ind by
Art. 77 that the total surface-integral of the clement, together with
the quantity of electricity within it, multiplied by 4= is zero, or,
dividing by dadBdy,
@y azv.., P )2 D2DE
D i+ b am P =
which is the form of Poisson’s extension of Laplace’s equation re-
ferred to ellipsoidal coordinates.

If p = 0 the fourth term vanishes, and the equation is equivalent
to that of Laplace.

For the general discussion of this equation the reader is referred
to the work of Lamé already mentioned.

149.] To determine the quantitics a, B, y, e may put them in
the form of ordinary elliptic functions by introducing the auxiliary
angles 0, ¢, and , where

0, (11)

A= U sind, (12)

N e r Y (13)
¢

—_°.. 14

Ay sinyr (14)

If we put b = ke, and £* +4* =1, we may call £ and ¥ the two
complementary moduli of the confocal system, and we find
o a0 (15)

@ = IR 5
Jo 1 —4*sin? 0
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an clliptie infegral of the first kind, which we may write according
to the usual notation 7(40).
In the same way we find

B = /'"’ - ) (16)

Jo AT I cos? ¢

y : d . X4
where 1% is the complete function for modulus #,

_ [ s O, 17)
y-.[ \/l—l*’sing\p—[(‘w (

Here a is represented as a function of the angle 6, which is a
fanction of the parameter A;, g as a function of ¢ and thenee of Ay,
and y as a function of ¢ and thence of Ay

But these angles and parameters may be considered as functions
of a, B,y. The properties of such inverse functions, and of those
connected with them, are explained in the treatise of M. Lamé on
that subject.

It is casy to sce that since the parameters are periodic functions
of the auxiliary angles, they will he periodic funetions of the
quantities a, B, y: the periods of Ap and Agare 4 F(£) and that of A,
1s 2 (),

Lurticular Solutions.

150.1 If 77is a linear function of a, 3, or y, the equation is
ratisfied.  Tlence we may deduce from the equation the distribution
of cleetricity on any two confocul surfaces of the same family
maintained at given potentials, and the potential at any point
hetween them.

The Iyperboloids of Two Sheets.

When a is constant the corresponding surface is a hyperboloid
of two sheets.  Liet us make the sign of a the same as that of z in
the sheet under consideration. We shall thus be able to study one
of these sheets at a time.

Liet a;, a, be the values of « corresponding to two single sheets,
whether of different hyperholoids or of the same one, and let o0,
be the potentials at which they are maintained. Then, if we make

poalizalita(li=1) (18)

a—a,
the conditions will be satisfied at the two surfaces and throughout
the space between them.  1f we make 7 constant and equal to /]
i the space beyond the surface ay, and constant and equal to #,
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in the space heyond the surfice a,, we shall have obtained the
complete solution of this particular case.
The resultant force at any point of either sheet is
ar aV da
) _ V=V, e o
0x ]?l = -*—————al_ae K_[j“ . ("0)
If ; be the perpendicular from the centre on the tangent plane
at any point, and 2, the product of the semi-axes of the surface,
then g, D, N = P,.
Hence we find B = ll____la em an

)
a—a, L

R = (19)

or the force at any point of the surface is proportional to the per-
pendicular from the centre on the tangent plane.
The surface-density o may be found from the equation
imo= R, (22)
The total quantity of electricity on a segment cut off by a plane
whose equation is # = @ from one sheet of the hyperboloid is
e V=T, a
Q=--L1—-2 Xl——-l) (23)
The quantity on the whole infinite sheet is therefore infinite.
The limiting forms of the surface are :—
(1) When a = F, the surface is the part of the plane of #z on
the positive side of the positive branch of the hyperbola whose

ation is 2,0
cqua :'1,6 -—:,', =1. (24)
2T
(2) When a = 0 the surface is the plane of y2.
(3) When a = — I,y the surface is the part of the plane of 22 on

the negative side of the negative branch of the same hyperbola.

The Hyperboloids of One Sheet.

By making 8 constant we obtain the ecuation of the hyperboloid
of one sheet. The two surfaces which form the boundaries of the
electric field must therefore belong to two different hyperboloids,
The investigation will in other respeets be the same as for the
hyperboloids of two sheets, and when the difference of potentials
is given the density at any point of the surface will be proportional
to the perpendicular from the centre on the tangent plane, and the
whole quantity on the infinite sheet will be infinite.



WETI™ =7 o " “-“

186 CONFOCAL QUADRIC SURFACES. [150.

Limiting Forms.

(1) When B =0 the surfice is the part of the plane of 22
between the two branches of the hyperbola whose equation is
written above, (24). )

(2) When 8= /(#) the surface is the part of the plane of zy
which is on the outside of the focal cllipse whose equation is

s Vi

c? + P

= 1. (25)

134

The Ellipsoids.

Forany given ellipsoid y is constant. If two ellipsoids, y, and y,,
he maintained at potentials Fy and F,, then, for any point y in the
space between them, we have

7= 0Dy ity =T (26)
Yi—7a
The surface-density at any point is

o= 2 D=l £l (27)
T =y £y
where p, is the perpendicular from the centre on the tangent plane,
and Py is the product of the semi-axes.
The whole charge of cleetricity on either surface is
[— _ l—.)
Q. =c 1———:=—Q N (28)
. . ’ 1—7: !
a finite quantity.,

When y = F(4) the surface of the ellipsoid is at an infinite
distance in all directions,

If we make 7, =0 and 4, = F (), we find for the quantity of
clectricity on an ellipsoid maintained at potential /™ in an infinitely
extended field, I

Q= c]"([‘)—-y. (29)

The limiting form of the cllipsoids occurs when y = 0, in which
case the surface is the part of the planc of zy within the focal
ellipse, whose equation is written above, (25).

The surface-density on the elliptic plate whose equation is (25), and
whose eccentricity is 4, is

_ V 1 1
T 2n /e 3 F(R) ,\/1 P
2 ot

P ’ (30)

and its charge is ¥

Q: (JFZZ:)- (31)

P
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Particular Cases.

1561.] If % is diminished till it becomes ultimately zero, the
system of surfaces becomes transformed in the following manner :—

The real axis and onc of the imaginary axes of each of the
hyperboloids of two sheets are indefinitely diminished, and the
surface ultimately coincides with two planes intersecting in the
axis of z,

The quantity a becomes identical with 0, and the equation of the
system of meridional planes to which the first system is reduced is

2 y2
S — =0, 32
(sina)?  (cosa)® (32)

The quantity 3 is reduced to

dep ¢ "
= -_— = H s 33
B /S]ll(p log t'm2 (33)
whenece we find
. 9 eB— e B
= = " 34
sin ¢ = g cos ¢ P (34)

If we call the cxponential quantity 4(ef+e~F) the hyperbolic
cosine of B, or more concisely the hypocosine of 3, or cosZ 3, and if
we call § (¢P—e~F) the hyposine of 8, or sinZ B, and if by the same
analogy we call

1
cosk the hyposeeant of 8, or see £ f3,
1

Sini B the hypocosecant of 3, or cosec 4 3,

Z—g;—jfg the hypotangent of g, or tan Z 3,
and zﬁf——% the hypocotangent of 3, or cot 4 8 ;
then A, = csec 2 B, and the equation of the system of hyperboloids
of one sheet is
o A s (35)
(scc £B)*  (tan/p)?
The quantity y is reduced to v, so that A, = ccosec y, and the
equation of the system of ellipsoids is

vy il 2 (36)

_——-—‘7 » — c
(secy)®  (tany)?
Ellipsoids of this kind, which are figures of revolution about their
conjugate axes, are called Planetary ellipsoids.
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The quantity of clectricity on a planetary ellipsoid maintained at
potential #in an infinite ficld, is

Q=c
T
2
where ¢ see y is the equatorial radius, and ¢ tan y 18 the polar radius.

If y = 0, the figure is a circular disk of radius ¢, and

T = ——=——oy (38)

7

s (37)

Q=c—. (39)

152.] Second Case. Let b = ¢, then & = 1 and ¥ = 0,
a = log tan W;IQB, whenee A, = ctank a, (40)

and the equation of the hyperboloids of revolution of two sheets
becomes 2 y: 422
~-_f._,5 —_ _’/._""‘_' = ¢2, (11)
(tanka)®  (sec ka)®
The quantity B becomes reduced to ¢, and each of the hyper-
boloids of one sheet is reduced to a pair of planes intersecting in
the axis of & whose equation is
9° 22
= — - = (), 42
(sinf)?  (cos B)? 0 (12)
This is a system of meridional planes in which B is the longitude.

m—2
The quantity y becomes log tan _-r_“__\/i’ whence Ay = ¢ cot 4y,

and the equation of the family of ellipsoids is
22 L
(cothy)E + (cosec ky)E =
These ellipsoids, in which the transverse axis is the axis of revo-
lution, are called Ovary ellipsoids.
The quantity of eclectricity on an ovary ellipsoid maintained at a
potential /" in an infinite field is

e, (43)

vV
Q =0 —- (4."1)
b4
If the polar radius is 4 = ¢ cot Zy, and the equatorial radius is
B = ccosech y,

A+ IR (45)
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If the equatorial radius is very small compared to the polar radius,
as in a wire with rounded ends,

y = log ilﬁ” and Q = A7 (46)

log A—Tlog B’

When both & and ¢ become zero, their ratio remaining finite,
the system of surfaces hecomes two systems of confocal cones, and
a system of spherical surfaces of which the radius is inversely
proportional to y.

If the ratio of 4 to ¢ is zero or unity, the system of surfaces
becomes one system of meridian planes, one system of right cones
having a common axis, and a system of concentric spherical surfaces
of which the radius is inversely proportional to y. This is the
ordinary system of spherical polar coordinates.

Cylindric Surfaces.

158.] When ¢ is infinite the surfaces are eylindric, the generating
lines being parallel to 2. One system of cylinders is elliptic, with
the equation

z2 7" .
B —_ 4
(cos L a)? + (sin £ a)? 47
The other is hyperbolic, with the equation
i A (48)

(cos B)E " (sin B)%

This system is represented in Fig. X, at the end of this volume.

Confocal Paraboloids.

154.] If in the general equations we transfer the origin of co-

ordinates to a point on the axis of « distant ¢ from the centre of

the system, and if we substitute for @, A, 4, and ¢, t4-2, (+A, £+,
and {+c¢ respectively, and then make ¢ increase indefinitely, we
obtain, in the limit, the equation of a system of paraboloids whose
foci are at the points + = b and z = ¢,

Y A
4 (z—N)+ it

2

A—c

= 0. (49)

If the variable parameter is A for the first system of elliptic
paraboloids, p for the hyperbolic paraboloids, and » for the second
system of elliptic paraboloids, we have A, 4, p, ¢, v in ascending
order of magnitude, and

e ———

o A——— o < e w7
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T =)\+[£+D-—C‘—-l),
gt = 4 (=N (w~8)(v~1),

‘. c—b (50)
=) (ome).
T c—b > )

A= &(&—i—c)——{r(c—b)cos/ta,
w=40+)—4(c—b)cosp, | (51)
v=140+c)+4(c—b)coshy; |

z=4(+c)+14(c—0) (cos &y —cos B~ cos 4 a),

2 (¢~0) sin /z;sin gcosltg,

B

2 (c—~b)cosh gcosésin/zg-

¥ (52)

t
li

When & = ¢ we have the case of paraboloids of revolution about

the axis of @, and T = a (et —g),
¥ = 2ae*Y cos 3, (53)
2= 2ue**Ysin B.

The surfaces for which 8 is constant are planes through the axis,
A being the angle which such a plane makes with a fixed plane
through the axis.

The surfaces for which a is constant are confocal paraboloids,
When a=0 the paraboloid is reduced 1o a straight line terminating
at the origin.

We may also find the values of a, B,y in terms of 7, 6, and ¢,
the spherieal polar coordinates referred to the focus as origin, and
the axis of the parabolas as axis of the sphere,

a = log (7 cos 4 9),
B = ¢, (54)
y = log (r} sin } 0),

We may compare the case in which the potential is equal to q,
with the zonal solid harmonic 7, Q,. Both satisfy Laplace’s equa-
tion, and are homogeneous functions of Z, 4, 2, but in the case
derived from the paraboloid there is a discontinuity at the axis, and
¢ has a value .ot differing Ly any finite quantity from zero.

The surface-density on an electrified paraboloid in an infinite
ficld (including the ease of a straight line infinite in one direction)
is inversely as the distance from the focus, or, in the case of
the line, from the extremity of the line,



CHAPTER XI.
THEORY OF ELECTRIC IMAGES AND ELECTRIC INVERSION,

155.] We have already shewn that when a conducting sphere
is under the influence of a known distribution of clectricity, the
distribution of clectricity on the surface of the sphere can be
determined by the method of spherical harmonics.

For this purpose we require to expand the potential of the in-
fluencing system in a series of solid harmonics of positive degree,
having the centre of the sphere as origin, and we then find a
corresponding serics of solid harmonics of negative degree, which
express the potential due to the electrification of the sphere.

By the use of this very powerful method of analysis, Poisson
determined the cleetrification of a sphere under the influence of
a given clectrical systemn, and he also solved the more difficult
problem to determine the distribution of electricity on two con-
ducting spheres in presence of cach other. These investigations
have been pursued at great length by Plana and others, who have
confirmed the accuracy of Poisson.

In applying this method to the most clementary case of a sphere
under the influence of a single electrified point, we require to expand
the potential due to the clectrified point in a series of solid har-
monics, and to determine a second series of solid harmonics which
express the potential, due to the clectrification of the sphere, in the
space outside.

It docs not appear that any of these mathematicians observed
that this second scries expresses the potential due to an imaginary
eletrified point, which has no physical existence as an electrified
point, but which may be called an electrical image, because the
action of the surface on external points is the same as that which
would be produced by the imaginary clectrified point if the spherical
surface were removed.
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This discovery scems to have been reserved for Sir W. Thomson,
who has developed it into & method of great power for the solution
of clectrical problems, and at the same time capable of being pre-
sented in an elementary geometrieal form.

His original investigations, which are contained in the Cambridye
and Dublin: Mathematical Journal, 1848, are expressed in terms of
the ordinary theory of attraction at a distance, and make no use of
the method of potentials and of the general theorems of Chapter TV,
though they were probably discovered by these methods. Instead,
however, of following the method of the author, I shall make free
use of the idea of the potential and of equipotential surfaces, when-
ever the investigation can be rendered more intelligible by such
means,

Theory of Electric Images.

156.] Let 4 and B, Figure 7, represent two points in a uniform

dielectric medium of infinite extent.

o Let the charges of 4 and B be ¢
and ¢, respectively. Let 2 be any
n W e point in space whose distances from
f\' VA e b

4 and B are 7, and 7, respectively,
Then the value of the potential at
will be ey b 1)
o7y

The equipotential surfaces due to
this distribution of electricity are represented in Fig. I (at the end
of this volume) when ¢; and ¢, are of the same sign, and in Fig. 11
when they are of opposite signs.  We have now to consider that
surface for which }"= 0, which is the only spherical surface in
the system,  When ¢, and ¢, are of {he same sign, this surface is
entirely at an infinite distance, hut when they are of opposite signs
there is a plane or spherical surface at  finite distance for which
the potential is zero.

The equation of this surface is

Fig. 7.

e e,
L4+ -2 =0 (2)
7 7,

Its centre is at a point € in 4B produced, such that
AC: BC:: e : o,
and the radius of the sphere is
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sphere, that is to say, they lie in the same radius, and the radius is
a mean proportional between their distances from the centre.

Since this spherical surface is at potential zero, if we suppose
it constructed of thin metal and connected with the earth, there
will be no alteration of the potential at any point either outside or
inside, but the electrical action everywhere will remain that due to
the two electrified points A and B.

If we now keep the metallic shell in connexion with the carth
and remove the point B, the potential within the sphere will become
everywhere zero, but outside it will remain the same as before.
TFor the surface of the sphere still remains at the same potential,
and no change has been made in the exterior clectrification.

Hence, if an clectrified point 4 be placed outside a spherical
conduetor which is at potential zero, the electrical action at all
points outside the sphere will be that due to the point A together
with another point 8 within the sphere, which we may call the
eleetrical image of A.

In the same way we may shew that if Bis a point placed inside
the spherical shell, the electrical action within the sphere is that
due to B, together with its image A.

157.] Definition of an Klectrical Tmage. An electrical image is
an eleetrified point or system of points on one side of a surface
which would produce on the other side of that surface the same
clectrieal action which the actual electrification of that surface
really does produce.

In Optics a point or system of points on one side of a mirror
or lens which if it existed would emit the system of rays which
actually exists on the other side of the mirror or lens, is called =
virtnal image.

Eleetrical images correspond to virtual images in optics in being
related to the space on the other side of the surface. They do not
correspond to them in actual position, or in the merely approximate
character of optical foci.

There are no real clectrical images, that is, imaginary electrified
points which would produce, in the region on the same side of the
clectrified surface, an effect equivalent to that of the clectrified surface.

For if the potential in any region of space is equal to that due
to a certain electrification in the same region it must be actually
produced by that electrification. In fact, the electrification at any
point may be found from the potential near that point by the
application of Poisson’s equation,

VOL. 1. 0
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Let « be the radius of the sphere.

Let /'be the distance of the electrified point . from the centre C,
Let ¢ be the charge of this point.

Then the image of the point is at B, on the same radius of the

)
. - N . . «
sphere at a distance o and the charge of the image is —e v

We have shewn that this image

v will produce the same cffect on the

opposite side of the surface as the

i % fa actual electrification of the surface
N D does. We shall next determine the

surfuce-density of this clectrilica-
tion at any point P of the spherical
surfuce, and for this purpose we shall
make use of the theorem of Coulomb,
Art. 80, that if # is the resultant foree at the surface of a conductor,
and o the superficial density,

Fig. 7.

P = age,
& being measured away from the surface,
We may consider 2 as the resultant of two forees, a repulsion
¢ . . @ 1 .
e acting along 4P, and an attraction e]. P teting along P53,
Resolving these forces in the directions of ¢ uud CP, we find

that the components of the repulsion are

74 cu
—= along ¢, and =2,
APYTTTR ’ A0

Those of the attraction are

along CP.

—e i; JTLT-" BC along AC, and —6%:_17}7 along CP.

Now BP = ; AP, and BC = {/f-, so that the components of

the attraction may bLe written
.1 J? o1 o
—ef T along AC, and —¢ « 173 along (P,

The components of the attraction and the repulsion in  the
direction of AC are equal and opposite, and therefore the resultant
force is entirely in the direction of the radius CP. This only
confirms what we have ulr ady proved, that the sphere is an equi-
potential surface, and therefore a surface to which the resultant
force is everywhere perpendicular,
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The resultant force measured along €2, the normal to the surfuce
in the direction towards the side on which . is placed, is
Re—p/ —% 1 (3)
a  AP?
If' A is taken inside the sphere /' is less than «, and we must
measure /' inwards, Yor this case therefore

e A
R=——— . (4)
a  AP?
In all cases we may write
s AD.Ad 1 .
h=—c —0])— Aﬁj)“’ (7)

where A1), Ad are the segments of any line through A cutting the
sphere, and their product is to be taken positive in all cases.
158.] From this it follows, by Couloml’s theorem, Art. 80,
that the surface-density at P is
AD. Ad 1 .
‘iz cp A (©)
The density of the clectricity at any point of the sphere varies
inversely as the cube of its distance from the point .
The effect of this superficial distribution, together with that of
the point .1, is to produce on the sume side of the surface as the
point 4 a potential equivalent to that due to e at 4, and its image

—eZ at B, and on the other side of the surface the potential is

S
everywhere zero.  Hence the effect of the superficial distribution
Ly itself is to produce a potential on the side of .{ equivalent to

g = —

that due to the image —1:}, at B, and on the opposite side a

potential equal and opposite to that of ¢ at .

. C a
The whole charge on the surface of the sphere is evidently ~e

v .

since it is equivalent to the image at B,
We have therefore amvived at the following theorems on the
action of a distribution of electricity on a spherical surfuce, the
surface-density being inversely as the cube of the distance from
a point . cither without or within the sphere.
Let the density be given by the equation

c
T = [71)3’ (7)
where (' is some constant quantity, then by equation (6)
¢ = _e/ll).zlfl' (8)
tma

02
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The action of this superficial distribution on any point separated
from i Dy the surface is equal to that of g quantity of clectricity
—¢, or dwal
concentrated at /.

Its action on any point on the same side of the surface with 4 is
equal to that of u quantity of cleetricity

17 Ca®
SAD. A
concentrated at B the image of 1.

The whole quantity of electricity on the sphere is equal to the
first of these quantities if' 4 is within the sphere, and to the second
if 4 is without the sphere.

These propositions were established by Sir W. Thomson in his
original geometrical investigations with reference to the distribution
of electricity on spherical conductors, to which the student ought
to refer,

159.7 If a system in which the distribution of electricity is
known is placed in the neighbourhood of a conducting sphere of
radius @, which is maintained at potential zero by connexion with
the carth, then the electrifications due to the several parts of the
system will be superposed.

Let A, A4,, &e. be the clectrified points of the system, Ju s, &e.
their distances from the centre of the sphere, ¢, e,, &ec. their
charges, then the images By, B, &e. of these points will be in the
same radii as {the points themselves, and at distances %, g &

]

J1
from the eentre of the sphere, and their charges will he

a a
—C — -_—e —;- &C.
N

The potential on the outside of the sphere due to the superficial
electrification will be the same as that which would be produced by
the system of images 7, B,, &e.  This system is therefore called
the cleetrical image of the system ), A,, &e.

If the sphere instead of being at potential zevo is at potential 7
we must superpose a distribution of clectricity on its outer surface
having the uniform surface-density

I
o= —.
Yra

The effect of this at all points outside the sphere will be eqnal to
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that of a quantity Fa of electricity placed at its centre, and at
all points inside the sphere the potential will be simply increased
by F.
The whole charge on the sphere due to an external system of
influencing points A, A,, &ec. is
’ - L e ¢
F=TFa cl'/; L‘:‘/;’ &e., 9
from which cither the charge £ or the potential /" may be cal-
culated when the other is given.

When the electrified system is within the spherical surface the
induced charge on the surface is equal and of opposite sign to the
inducing charge, as we have before proved it to be for every closed
surface, with respect to points within it.

160.] The energy due to the mutual action between an elec-
trified point e, at a distance /' from the centre of the sphere greater
than @ the radius, and the electrification of the spherical surface
due to the influence of the clectrified point and the charge of the
sphere, is

Fa eat

ea e,
M=c¢ }.— - ju,_-_z_:) =] (E—'f(/“;—(ﬁ))’ (10)

where J7is the potential, and # the charge of the sphere.

The repulsion between the electrified point and the sphere is
therefore, by Art. 92,

ef
(f2—at)

e @t (21 —a?)
= y(F—e i 5—53)" (1)
il

Hence the force between the point and the sphere is always an
attraction in the following cases—

(1) When the sphere is uninsulated.

(2) When the sphere has no charge.

(3) When the clectrified point is very near the surface.

In order that the force may be repulsive, the potential of the

'3
sphere must be positive and greater than ¢ (-‘/2/&“-)_, , and the
charge of the sphere must be of the same sign as ¢ and greater
B2 18— g
than ¢ {{-.-(w'../;- . .;)'
RVAET

At the point of equilibrium the equilibrium is unstable, the force

= ¢ca (7’/2 -_—
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being an atbraction when the bodies are nearer and a repulsion
when they are farther off, -
When the ¢lectrified point is within the spherical surface the
force on the electrified point is always away from the centro of
the sphere, and is equal to
e? af’

(2% — f4)* ’
The surface-density at the point of the sphere nearest, {o the
clectrified point where it lies outside the sphere is
Vg, +a) ]
dma? (,ﬂ_" (f—~a) !
IR (T (12)

(Tl=

ama* | 1.—6,,/'(./'—0)2

The surface-density at the point of the sphere farthest from the
electrified point is

= 1 Sy, alf=a
7= e (l((—ez—}; a)?

!
$
oy, «*(3/) +a) )
; R S S
ima? | LS +a) S
When Z, the charge of the sphere, lics between
PR ) NG Vi)
LS —a)? S+ a)
the clectrification will he negative next the clectrified point, and
positive on the opposite side. There will be a circular line of division
between the positively and the negatively clectrified parts of the
surface, and this line will be a line of equilibrium.
. ' 1 1
1f I = ((1(’\/‘/“‘:_%1.2 /)r (14)
the equipotential surface which cuts the sphere in the line of equi-
librium is a sphere whose centre is the clectrified point and whose
radins is &/ /% Zy2,
The lines of force and equipotential surfaces belonging to a case
of this kind are given in Figure I'V at the end of this volume,

(13)

Lwages in an Tupinite Plane Condueting Surfirce.

1617 If the two electrified points A and B in Art. 156 are
clectrified with equal charges of electricity of opposite signs, the
surface of zero potential will he the plane, every point of which s
equidistant from . and A,
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Hence, if 4 be an electrified point whose charge is ¢, and 4D
a perpendicular on the plane, produce 4D
to B so that DB = AB, and place at B

a charge equal to —e, then this charge v
at. B will be the image of A, and will \
produce at all points on the same side of e 5 !

the plane as 4, an effect equal to that
of the actual electrification of the plane.
For the potential on the side of A due
to o and B fulfils the conditions that
viF = 0 cverywhere except at ., and
that /"= 0 at the plane, and there is only Fig. 8.
one form of 7 which can fulfil these conditions.

To determine the resultant force at the point P of the plane, we

observe that it is compounded of two forces cach equal to —I-;T,
Vil e
one acting along AP and the other along P#. Hence the resultant,
of these forces is in a direction parallel to 48 and equal to
¢ AB

AP ap”
Henee 2, the resultant foree measured from the surface towards the
space in which A lics, is

204D -
and the density at the point 2 is
— (.‘/1_]). (] G)
T2qAdDP

On FEleetrical Inversion.

162.] The method of electrical images leads direetly to a method
of transformation by which we may derive from any electrical
problem of which we know the solution any number of other
problems with their solutions.

We have scen that the image of a point at a distance » from the
centre of a sphere of radius 72 is in the sume radius and at a distance
7" such that »//=R%. Hence the image of a system of points, lines,
or surfaces is obtained from the original system by the method
known in pure geometry as the method of inversion, and described
by Chasles, Salmon, and other mathematicians.
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If A4 and B are two points, . and B’ their images, O being the
a centre of inversion, and £ the radius of the
sphere of inversion,

04.04" = B2 = Of3.05.

A
/ Hence the triangles OAB, OB’ A are similar,
p v W 4B K04 08 0408 : B2,
Fig. 9. If a quantity of electricity ¢ e placed at A,
its potential at B will he i ¢
V= n
If ¢’ e placed at £’ its potential at A will he
AT ,”/
A

In the theory of clectrical images

¢ 04:R:: RO,

Henee Fobro R 0B, (17)
or the potential at /5 due to the clectricity at 4 is to the potential
at the image of 2 due to the eleetrical image of A as R is to O,

Since this ratio depends only on OB and not on 0.1, the potential
at B due to any system of electrified bodies is to that at # due
to the image of the system as £ is to OB,

If » be the distance of any point .{ from the centre, and # that
of its image L, and if e be the electrification of Ay and ¢ that of .f,
also if' 7, 8, K be linear, superticial, and solid clements at 4, and
17, 8, K their images at Ay and A, a0, p, X, o, o the corresponding:
line-surface and volume-densities of eleetricity at the two points,
¥ the potential at .{ duc to the original system, and /* the potential
at " due to the inverse system, then

» A _»e N S’ R e K e R
TOLT AT FT TR = ik
¢ _f_a‘:' 7 N _ R
e r i’ PO
o e ot o " 5 r *(18) é
o T T e’ p = pn = 75
A _L )
TR T J

If in the original system a certain surface is that of 2 conductor,
be]

© See Thomson and Tait's Natural Philosophy, § 615,
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and has therefore a constant potential 2, then in the transformed
: . i/
system the image of the surface will have a potential P e But

by placing at O, the centre of inversion, a quantity of clectricity
equal to — P2, the potential of the transformed surtace is reduced
to zero.

Henee, if we know the distribution of ¢lectricity on a conductor
when insulated in open space and charged to the potential P, we
can find by inversion the distribution on a conductor whose form is
the image of the tirst under the influence of an clectrified point with
a charge — PR placed at the centre of inversion, the conductor
being in connexion with the earth.

163.] The following geometrical theorems are useful in studying
cases of inversion.

Every sphere becomes, when inverted, another sphere, unless
it passes through the centre of inversion, in which case it becomes
a plane,

If the distances of the centres of the spheres from the centre of
inveision are ¢ and «, and if their radii are a and o/, and if we
define the power of the sphere with respect to the centre of in-
version to be the product of the segments cut off by the sphere
from a line through the centre of inversion, then the power of the
first sphere is «®—a?, and that of the second is ¢ —~a™. We
have in this case

« d I w'?—a

= =pr (19)

e a a—d
or the ratio of the distances of the centres of the first and second
spheres is equal to the ratio of their radii, and to the ratio of the
power of the sphere of inversion to the power of the first sphere,
or of the power of the second sphere to the power of the sphere
of inversion.

The centre of either sphere corresponds to the inverse point of
the other with respeet to the centre of inversion.

In the case in which the inverse surfaces are a plane and a
sphere, the perpendicular from the centre of inversion on the plane
is 1o the radius of inversion as this radius is to the diamcter of
the sphere, and the sphere has its centre on this perpendicular and
passes through the centre of inversion.

Tvery circle is inverted into another cirele unless it passes
through the centre of inversion, in which case it becomes a straight

line.
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The angle hetween two surfaces, or two lines at their intersection,
1s not changed by inversion.

Lvery circle which passes through a point, and the mmage of that
point with respeet. to a sphere, cuts the sphere at right angles,

Hence, any circle which passes through a point and cuts the
sphere at right angles passes through the image of the point.

164.] We may apply the method of inversion 1o deduce the
distribution «f eleetricity on an uninsulated sphere under the
influence of an electrified point from the uniform distribution on
an insulated sphere not influenced by any other body.

If the electrified point be at ., {ake it for the contre of inversion,
and if 4 is at a distance /' from the centre of the sphere whose
radivs is @, the inverted figure will be a sphere whose radius is «’
and whose centre is distant, /', where

C_S_ R (20)
a AR EEL

The centre of cither of these spheres corresponds to the inverse
point of the other with respect to .4, or if € is the contre and B the
Tnverse point of the first sphere, ¢ will be the inverse point, and 73’
the centre of the second,

Now let a quantity ¢ of clectricity be communicated to the
second sphere, and Tet it be uninfluenced by external forces. It
will become uniformly distributed over the sphere with a surface-
density PR’ (21)

¢ tma™

Its action at any point outside the sphere will be the same as
that of a charge ¢’ placed at # the centre of the sphere.

At the spherical surfuce and within it the potential is

) = ', , (22)
(L
a constant quantity.

Now let us invert this system.  The centre B becomes in the

inverted system the inverse point B, and the charge ¢ at A

becomes ¢’ ij’,ﬁ at 7, and at any point separated from 7 Ly the
s

surface the potential is that due {o this charge at 7.
The potential at any point 2 on the spherieal surface, or on the
same side as B, is in the inverted system
¢ R

o AP
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If we now superpose on this system a charge ¢ at 4, where
’
¢
p=— = I (23)

the potential on the sphcrical surfuce, and at all points on the same

side as B3, will be reduced to zero. At all points on the same side

as A the potential will be that due to a charge ¢ at A, and a charge
R

s -5 at L.
J

Ao e = et (24)
S J :
as we found before for the charge of the image at B.
To find the density at any point of the first sphere we have
, N
T =0 /—[I)—‘ . (23)
Substituting for the value of o’ in terms of the quantities be-
longing to the fivst sphere, we find the same value as in Art. 158,
_ei=a), (26)

dmadP?

Bllt ¢

F =

On Finite Systems of Successive Images.

165.] If two condueting planes intersect at an angle which is
a submultiple of two right angles, there will be a finite system of
images which will completely determine the eleetrification.

For let 40B be a section of the two conducting planes per-
pendicular to their line of inter- o M
section, and let the angle of
intersection A0B = ::, let P
be an clectrified point, and let
PO =»r, and POB = 0. Then,
if we draw a circle with centre O
and radius OP, and find points
which are the successive images
of P in the two planes beginning 1
with OB, we shall find @, for the Fig. 10,
image of 2 in 05, P, for the image of @, in 0.1, Q, for that of 2,
in OB, P, for that of Q, in 0.4, and Q, for that of P, in OB,

If we had begun with the image of 7 in /0 we should have
found the same points in the reverse order @,, P, Q4, 7., @,
provided 408 is a submultiple of two right angles.

i
J

it g =

o niias Bl tnes ¢ S W Nt

e g

T e T e ey
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For the alternate images P, P,, P, are ranged round the circle
at angular intervals equal to 2408, and the intermediate images
@y, Q. @ are at intervaly of the same magnitude. Hence, if
2A0B is g submultiple of 27, there will be a finite number of
images, and none of these will fall within the angle 105, 1f,
however, OB is not a submultiple of 7, it will be impossible (o
represent the actual electrification as the vesult of a finite series of
clectrified points,

If 404 =}:, there will be » negative images @, Q,, &e., ecach
cqual and of opposite sign to 2, and n—1 positive images b,
Ly, &e., each cqual to P, and of the same sign,

;

The angle between successive images of the same sign is )”
If we consider cither of the conducting planes as a plane of sym-
metry, we shall find the positive and negative images placed
symmetrically with regard to that plane, so that for every positive
image there is u negative image in the same normal, and at an
equal distance on the opposite side of the planc.

If we now invert this system with respect to any point, the two
planes become two spheres, or a sphere and a plane intersecting

™ . . . F . 1. .
at an angle -, the influencing point being within this angle,
n

The suceessive images lie on the circle which passes through P
and intersects both spheres at right angles,

To find the position of the images we may cither make use of
the principle that a point and its image are in the same radius
of the sphere, and draw successive chords of the circle beginning
at £ and passing through the contres of the two spheres al.
ternately.,

To find the eharge which must be attributed to each image, take
any point in the circle of intersection, then the charge of cach
image is proportional to its distance from this point, and its sign
Is positive or negative according as it belongs to the first or the
sceond systeni.

166.] We have thus found the distribution of the images when
any space bounded by a conductor consisting of two spherical surfaces

. ™ . .
meeting at an angle —, and kept at potential zero, is influenced by
n

an electrified point.
We may by inversion deduce the case of a conductor consisting
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. . . . ki
of two spherical segments meeting at a re-entering angle -, charged
. n

to potential unity and placed in free space.

For this purpose we invert the system with respect to 2. The
cirele on which the images formerly lay now becomes a straight
line through the centres of the spheres.

If the figure (11) represents
a scction through the line of
centres A8, and if D, [) are the
points where the circle of in-
terseetion cuts the plane of the
paper, then, to find the suc-
cessive images, draw A a
radius of the first cirele, and
draw /AC, 1B, &c., making

T 27 .
:mg]os;, Ty &e. with D Fig. 11
7L

The points €, B, &e. at which they cut the line of centres will
be the positions of the positive images, and the charge of each
will be represented by its distances from /). The last of these
images will be at the centre of the second circle.

To find the negative images diaw DP, DQ, &c., making angles
g, -21—?, &e. with the line of centres. The intersections of these
lines with the line of centres will give the positions of the negative
images, and the charge of cach will be represented by its distance
from D.

The surface-density at any point of either sphere is the sum
of the surface-densities due to the system of images. For instance,
the surface-density at any point 8 of the sphere whose centre is
A, 18

1 re g DB " D0 | o

where A, B, C, &e. are the positive serics of images.

When §is on the circle of intersection the density is zero,

To find the total charge on each of the spherical segments, we
may find the surface-integral of the induction through that segment
due to each of the images, :

The total charge on the segment whose centre is .+ due to the
image at 4 whose charge is DA is
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ff j)?i = (D + O.1),
where 0 is the centre of the cirele of intersection,

In the same way the charge on the sume segment due to 1he
image at B is 4 (DB + 0Z8), and so on, lines such as OF measured
from O to the left being reckoned negative.

Hence the total charge on the segment whose centre is .f is

$(LA+DB+ DC+ &e.)+4(04+ 0B+ 0C+ &),
=3 (VP +DQ+&e)—4 (0P + 0Q + &e.).

167.] The method of electrical images may be applied to any
space bounded by plane or spherical surfaces all of which cut one
another in angles which are submultiples of two right angles,

In oxder that such a system of spherical surfaces may exist, every
solid angle of the figure must be trihedral, and two of its angles
must be right angles, and the third either a right angle or a
submultiple of two right angles.

Henee the eases in which the number of images is finite are—

Dz

(1) A single spherical surface or plane.
(2) Two planes, a sphere and a plane, or two spheres intersecting
n
=
(8) These two surfaces with a third, which may be either plane
or spherical, cutting hoth orthogonally,
(4) These three surfices with a [ourth cutting the first two

. w
orthogonally and the third at an angle -
’ Y/

at an angle

y Of these four surfaces
one at least must be spherical.

We have already examined the first and second cases. In the
first case we have a single image. In the sceond case we have
2n—1 images aranged in two scries in a eircle which passes
through the influencing point and is orthogonal to hoth surfaces,
In the third casc we have, bLesides these images, their images with
respeet to the third surface, that is, 42— 1 images in all besides the
influencing point.

In the fourth ease we first draw through the influencing point
a circle orthogonal to the first two surlaces, and determine on it
the positions and magnitudes of the # negative images and the
%z—1 positive images. Then through cach of these 2. points,
including the influencing point, we draw a cirele orthogonal to
the third and fourth surfaces, and determine on it two series of
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images, 7" in cach series. We shall obtain in this way, besides the
influencing point, 2n4'—1 positive and 2 22’ negative images.
These 4 22/ points are the intersections of # circles with 2 other
circles, and these circles belong to the two systems of lines of
curvature of a cyclide.

If each of these points is charged with the proper quantity of
electricity, the surface whose potential is zero will consist of % 2’
spheres, forming two series of which the successive spheres of the

. ™ .
first set interscet at angles =, and those of the second set at angles
7
7 . . .
—7, while every sphere of the first set is orthogonal to every sphere
”

of the second set,

Case of Two Spheres cutting Orthogonally.  See T ig. IV at the

end of this volume.

168.] Let 4 and B, Fig. 12, be the centres of two spheres cutting
each other orthogonally in 2 and
17, and let the straight line 2.0 cut Y
the line of centres in €. Then €
is the image of 4 with vespeet to
the sphere B, and also the image
of B with respect to the sphere
whose centre is .. If 4D =aq,
LD =g, then 4B = Ja2+p3, and
if we place at 4, B, C quantities Fig. 12,

Q

of clectricity equal to a, 8, and — /;?/3_41[_3_" respectively, then both
ok + 3
spheres will be equipotential surfaces wlﬁmu potential is unity,
We may therefore determine from this system the distribution of
electricity in the following cases
(1) On the conductor PDQI formed of the larger segments of
both spheres.  Tts potential is 1, and its charge is
atB— —2B_ _ 4pynn_CD.
Va3
This quantity therefore measures the capacity of such a figure
when free from the inductive action of other bodjes,
The density at any point 2 of the sphere whose centre is o, and
the density at any point Q of the sphere whose centre is £, are
respectivel y

,l'llra (]—(73@/7):) and }_‘::F (l _(;;I_Q):s).
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At the points of intersection, J), 7, the density is zevo.

If one of the spheres is very much larger than the other, the
density at the vertex of the smaller sphere is ultimately three times
that at the vertex of the lurger sphere.

(2) The lens I”DQ 17 formed by the two smaller segrents of
ap
Ny
and acted on by points ./ and B, charged with quantities a and 3,
is also at potential unity, and the density at any point is expressed

by the same formulae,

(3) The meniscus DPL/Q’ formed hy the difference of the
segments charged with a quantity e, and acted on by points 73

the spheres, charged with a guantity of eclectricity = —

and C, charged respectively with quantities 8 and -~ == x is also

in cquilibrium at potential unity. ~/

(1) The other meniscus Q07”17 under the action of A and C.

We may also deduce the distribution of electricity on the following
internal surfaces.

The hollow lens 77)Q'/) under the influence of the internal
clectrified point € at the centre of the circle D,

The hollow meniscus under the influence of a point at the centre
of the concave surface.

The hollow formed of the two larger segments of both spheres
under the influence of the three points A, B, ('

But, instead of working out the solutions of these cases, we shall
apply the principle of clectrical images to determine the density
of the clectricity induced at the point 2 of the external surface of
the conductor D@L by the action of a point at O charged with
unit of clectricity.

Liet 0l = u, OB =1, or =r, BP = p,

Al = a, B = }3, Al = \/;—‘f‘ﬁ"

Invert the system with respect to a sphere of radius unity and
cenire 0,

The two spheres will remain spheres, cutting cach other ortho-
gonally, and having their centres in the same radii with /£ and 5.
If we indicate hy aceented letters the quantities corresponding to
the inverted system,

a b a 3
= y W= e = =,
CEe_e "TE —g*’ TEER A O — 32
R ! ) ;/'2 B r +(&- ﬁ.) (1’-—

2 72 (/}. /3'.’)2
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If, in the inverted system, the potential of the surface is unity,
then the density at the point 7”7 is

.1 B\
= ., (1—=(2Y).
T 4 ‘n'a, ( (7/) )
If, in the original system, the density at 2 is o, then
1

].Il

o
p
cyoe ] . .
and the potential is o By placing at O a negative charge of’

electricity equal to unity, the potential will beecome zero over the
surface, and the density at 2 will be
ol g me

1 e T (g () (2 B

This gives the distribution of clectricity on one of the spherical
surfaces due to a charge placed ut 0. The distribution on the
other spherieal surface may be found by exchanging « and 4, o and
B, and putting 4 or 4@ instead of p.

To find the total charge induced on the conductor by the elee-
trified point at 0, let us examine the inverted system,

In the inverted system we have a charge o’ at .7, and " at /7,

and a negative charge a/j ,, at a point €7 in the line 745,
Jar i g
such that AC:CH o d® g2,

WOd=2o, 0 =4, O0'= ", we find
Wt B — a2 3

’e

4

a3
Inverting this system the charges hecome
o« a F_ B,
& T d T
1~
3 1
and LA - a[i_ i

- P ‘,' - T . l."._..» - ..;:' .
.\/u~'+,‘53 ¢ thzﬂz +4%a—a%p?
Henee the whole charge on the conduetor due to a unit of
negative electricity at 0 is
a 3 af3

P ,}_ o o e — .
« /] \/,,;:B: + {2a% —a2p?

VOL. 1. P
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Distribution of Electricity on Three Spherical Surfuces which
Dietersect at Right Augles.
169.] Let the radii of the spheres be a, 3, y, then

BC=VEtyt, Cd=vE T A8 = Vat g2,

Let PQR, Yig. 13, be the feet
of the perpendiculars from ARC
on the opposite sides of the tri-
1T~ angle, and let O be the inter-
section of perpendiculars.

Then 2 is the image of B in
the sphere y, and also the image
of Cin the sphere 8. Also O is
the image of 2 in the sphere a.

Let charges o, 8, and y be

/ ( placed at 4, B, and C.
T Then the charge to be placed

at Pis
_ 1
Vo 57 T
2t e
e e — B
2R T i o
Also AP = VB +1“a‘-{ all » so that the charge at 0, con-
~//32 1 )/2
sidered as the image of P, is
_ _ﬂaBy»_‘” o 1
VB T T T
PER TR

In the same way we may find {he system of images which are
electrically equivalent to four spherical surfaces at potential unity
intersecting at right angles.

If the radius of the fourth sphere is 8, and if we make the charge
at the centre of this sphere = 8, then the charge at the interseetion
of the line of centres of any two spheres, say a and 8, with thejr

planc of intersection, is 1
ey

Vl; 1,
a* +/32

The charge at the intersection of the plane of any three centres
ABC with the perpendicular from 2 i
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and the charge at the interscction of the four perpendiculars is
1

/\/ 11 7 1
aZ + I 7 + 52
System of Lour Spheres Interseeting at Right dngles under the
detion of an Eleelrified Point.

170.] Let the four spheres be A,.B,C, ), and let the electrified point
be 0. Draw four spheres Ay, By, ¢y, Dy, of which any one, A,
passes throngh O and cuts three of the spheres, in this case B,
C, and D, at right angles. Draw six spheres (ab), («c), (ad), (b¢),
(bd), (ed), of which each passes through O and through the circle
of intersection of two of the original spheres,

The threc spheres B, C,, 1), will intersect in another point, besides
0. Let this point be called A/, and let 7, ¢, and I/ be the
intersections of €y, Dy, A,, of D,, 4y, By, and of A, B, C; re-
spectively.  Any two of these spheres, A4, B, will intersect one of
the six (¢)in a point («'4).  There will he six such points,

Any one of the spheres, A;, will intersect three of the six («f),
(«c), (ad) in a point &’. There will be four such points. Vinally,
the six spheres (ad), (ac), (ad), (cd), (b), (be), will interseet in one
point §.

If we now invert the system with respect to a sphere of radius
R and centre O, the four spheres «, B, €, 1) will be inverted into
spheres, and the other ten spheres will beeome planes. Of the
points of intersection the first four ', £, €’, 1/ will become the
centres of the spheres, and the others will correspond to the other
eleven points in the preceding article. These fiftcen points form
the image of O in the system of four spheres.

At the point /', which is the image of O in the sphere f, we

. . . a
must place a charge equal to the image of 0, that is, — -, where
@

is the radius of the sphere o, and « is the distance of its centre
from 0. In the same way we must place the proper charges at
5,0, .

The charges for each of the other eleven points may be found from
the expressions in the last article by substituting «, 8, ¥, & for
a, 3, ¥ 8, and multiplying the result for each point by the distance
of the point from O, where
B / 24 d

e Y cZ—yt’ V=—t_p

’ 4
Q== [=
a- —a”
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Lo Spheres nol Inlerseeti ny.

171.] When a space is bounded by two spherical surfaces which
do not intersect, the snccessive tmages of an influencing point
within this space form two infinite series, all of which lie beyond
the spherical surfaces, and therefore fulfil the condition of the
applicability of the method of electrical images.

Any two non-intersecting spheres may be inverted into two
concentric spheres by assuming as the point of inversion cither
of the two common inverse points of the pair of spheres.

We shall begin, therefore, with the case of two uninsulated
concentrie spherical surfaces, subject to the induction of an elec-
trified point placed hetween them,

Let the radius of the fivst be 4, and that of the sccond 4e®, and
let the distance of the influencing point from the centre be » = e,

Then all the successive Images will be on the same radius as the
influencing point,

Let @, Fig. 14, he the image of £ in the fivst sphere, Py that
of @, in the second sphere, Q, that of 2, in the first sphere, and
s0 on; then

0L,.0Q, =02,
and 0,.0Q,_ | = 42 2®,
also 0Q, = be,
OF, = letr2w,
0Q, = be=+2®) g0
Henee OF, = petvtznm),
0Q, = be=w+2w)
If the charge of 2 is denoted by P,
Fig. 14, then
I = ]’U"‘,‘T, Q‘ = — PenteT),

Nest, let Q) be the image of 2 in the second sphere, /" that of

Q) in the first, &e.,

— T

0Q) = he*w-n 0P/ = be-2w,
OQ:’= écllw‘", OL) = -1 ;
OP = bhet—uar, 0Q,= be®-n

L/ = P+ Q= Per®-n,

OF these images all the 7% gre positive, and all the @’s negative,
all the £7s and Q’s belong to the first sphere, and all the /% and
Q"’s to the second.
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The images within the first sphere form a converging scries, the

sum of which is
T — ]

J—y )

¥ —1

This therefore is the quantity of clectricity on the first or interior
sphere. The images outside the second sphere form a diverging
scries, but the surface-integral of each with respeet to the spherical
surface is zero.  The charge of electricity on the exterior sphetical
surface is therefore

PO Y= p T
¢® —1 ¢ —1

I we substitute for these expressions thenr values in terms of
0.4, OB, and 0P, we find

0.4 PB

' S re =P,
charge on 4 =1 P iR
; OB 4P

charge on B=—P P B’

If we suppose the radii of the spheres to hecome infinite, the ease
becomes that of a point placed between two parallel planes 4 and B.
In this case these expressions hecome

charge on d = — P — 75,

charge on = — 7 AL,
Al

172.] In order to pass from this case to that of any two spheres
not intersecting cach
other, we bhegin by
finding the two com-
mon inverse points 0,
¢/ through which all g
circles pass that are  /
orthogonal to  hoth !
spheres. Then, invert-
ing the system with \
respeet  to  cither of ‘
these points,the spheres
become coneentrie, as Tig. 15.
in the first case.

The radius O4PB on which the suceessive images lic bheeomes
an are of a circle through 0 and ¢, and the ratio of 0’2 to OP is
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equal to Ce¢* where € is a numerical quantity which for simplicity
we may make equal to unity.
We therefore put

g P, O L OB
U = gﬁ-; a = log 011; ﬂ_, OE’U__]-)’-.
Let B—a =, U—a = 0.

Then all the sueeessive images of P will lic on the arc O PR(.
The position of the image of 2 in . is @, where

(04
u (Q,)=log U—QQ = 2a—u,
That of @, in B is P, where
opr
w(lP) =log ' = u+24.
. ( l) & Uj)l +2lw
Similarly
u(P,) = u+2sw, %(Q,) = 2a—u—2sw.
In the same way if the successive images of P in B, A, B, &e.
are Q), I/, Q/, &e.,
#(Q)) = 2B8—u, 2 ()= u—2q;
w(l))=u—2sw, ©(Q)) = 2B—u+2swm.
To find the charge of any image P, we ohserve that in the
inverted figure its charge is
OP,
> 1,
1 or
In the original figure we must multiply this by O'P,. Hence the
charge of 2, in the dipolar figure is

P OP,.0'P,
(0077
If we make ¢ =+/OP.UP, and call ¢ the parameter of the
point P, then we may write

b _ &
]A_ é-])

or the charge of any image is proportional to its parameter.
If we make use of the curvilinear coordinates % and v, such that

v+ =1y}

eu+ VY1 — ,
T =1y +k
Asinbu Asiny
then om0 ) ¥ = ;
Cos 41— cos v cos Au—cos v

; *;_
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@t +(y— £k cotv)® = A* cosec?y,
(@ +FEeot i) + 32 = k% cosec h*u,

Since the charge of each image is proportional to its parameter,
& and is to be taken positively or negatively according as it is of
the form P or @, we find

P/coshu=cosv

I’ = e T I T

]

Peos i —cos v

Veosh(2a—u—2sm)— cosv
P PV estu—coso

) Acos & (e—2 s w)—cos v

P/cos hu—cos v

B Vcosk (2B—u+28w)—cosv '

Qn=_

Q=

We have now obtained the positions and charges of the two
infinite scries of images. We have next to determine the total
charge on the sphere 4 by finding the sum of all the images within
it which are of the form @ or 7. 'We may write this

© 1

T —m] &=
P/ cos hu—cos v 2‘=1 Veos (e :-2;@) —cosv

P =0 1
—P+/coshu—cosv 2 —

=0 /cosh(2a—u—28m)~Cos v

In the same way the total induced charge on B is

P / Ea=m 1

Veosh —cos v - — = !

cosft—eos =1 Jeosh(u+2s@)—cosv
e = 1

—Pa/cos hu—cosv 2 .

=0 cosh(2—u+2sw)—cos v

* In these expressions we must remember that
2coshu=c*+¢7", 2sinhu ="~
and the other functions of » are derived from these by the same definitions as the
corresponding trigonometrical functions,

The method of applying dipolar coordinates to this case was given by Thomson in
Liourille's Journal for 1847,  See Thomson's reprint of Flectrical Papers, § 211, 212,
In the text I have made use of the investigation of Prof. Betti, Nuovo Cimento,
vol. xx, for the analytical method, but T have retained the idea of electrical imuages as
used by Thumson in his original investigation, P'hil. Mag., 1853.
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173.7 We shall apply these results to the determination of the
cocflicients of capacity and induetion of tywo spheres whose radii are
@ and 4, and the distance of whose centres is ¢.

In this case

P A AT VLY Yoy gy Y
= - e Py -

)
. Vs . k
sin/.aq = e sin 4.3= 7"

Let the sphere 4 be at potential unity, and the sphere B at
potential zero,

Then the sucecessive images of o charge « placed at the eentre
of the sphere Lf will be those of the actual distribution of electricity.,
All the images will lic on the axis hetween the poles and the
centres of the spheres.

The values of # and » for the centre of the sphere A are

r= 2a, v =0
. 1 .
Hence we must substitute ¢ oy * T for 2, and 2a for #, and
sin/ a
¢=01n the cquations, remembering that 7 itself forms part of the
charge of . We thus find for the cocflicient. of capacity of A
S=. 1
= 7 ”
Yo Em“ sin/(sw—a)

for the coeflicient of induction of £ on 2 or of 5 on .
= 1
T = =4 Em siihse
and for the cocflicient of capacity of 7

s=m 1
= 7 . S
o Em" sin (343 w)

To caleulate these (quantities in terms of ¢ and 4, the radii of the
spheres, and of ¢ the distance between their centres, we male use
of the following quantities

)= :/\//-;;—f—]‘f{fa
A a
g

/j:(.‘ﬁ

i
) !
-+
-t
+
v
-
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We may now write the hyperholic sines in terms of y, ¢, 3 thus

=m0 2 ]l:
ff-ut = 2;:0 ;T.T’

2 7*

s=o 2%k
(/uh = —E‘___l __‘1_-’

75— e
F=a 2%
o = 2::0 —T

Proceeding to the actual caleulation we find, cither by this
process or by the direct ealeulation of the snceessive images as
shewn in Sir W, Thomson’s paper, which is more convenient for
the carlier part of the series,

atd adh

(g 5t (e* —0% +ac) (¢t~ ~ac) +e,
ab ach? at s &
ahy == — === = g e -
Lt ¢ e(ef—a—0%) e (e*—u? =b¥ +ab) (¢F—at =t —ad) &e.
2 213
o =0+ al %l 4 &

P (2 = a*4-be) (¢* —a* —be)
174.] We have then the following cquations to determine the
charges 5, and %, of the two spheres when clectrified to potentials
/", and F), respectively,
]("u = [ru //”“ + Il—h (juh)
]9‘,, = 7’;! ’jdl' "l- 7;1 lll:h .
1
D[ >
and ])(m = (/M: ])/3 /)..I. = _"(/.tb DI’ ])lulu = (_/nm ])I)

If we put Gou =G> = N =

whenee Paa Pir— P = 1
then the equations to determine the potentials in terms of the
charges are V.= pou Bt pa By
Vo =paLic+ pu By,

and 2., 2, and py, are the coeflicients of potential.

The total energy of the system is, by Art. 85,
(LT AT,
2 quat 2T g+ 1% qu)s
(B2 paat 2 By By pra+ B2 pua)-
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The repulsion between the spheres is therefore, by Arts. 92, 93,

RN R N S TR
F= %f Ja e + 2/, de +h de \’

=1 J’z’%+ 2191,15;%'_’- + /s‘,,‘-"?/fc"_"f ;
where ¢ is the distance between the cenfres of the spheres.

Of these two expressions for the repulsion, the first, which
expresses it in terms of the potentials of the spheres and the
variations of the cocfficients of capacity and induction, is the most
convenient for caleulation.

We have thercfore to differentiate the ¢’s with respect to e,
These quantitics are expressed as functions of £, a, B, and =, and
must be differentiated on the supposition that « and 4 are consiant.
From the equations

k=asinka=bsinig = cw@

sinflw
. da _ sinkacosip
we find T hende
4B _coshasinip
de = ksinhw
(/m'__ 17
de T}’

d& _coshacoshp
de ™  sinkw
whence we find

@Qua _ cOsShacoslp Fora E::m (sc—acoskB)cos k(s ©—a)

de —  sinhw 4 =0 e (sin/(s 73"—‘15)2 ’

dga, _ coshacosl By, 2.::: scosh s ,
de = sinkw £ =1 (sinksw)?

dgw, _ cosha cos 4B _ E:=w (se+bcos a)cos /(8 +3w)
de T Tsinkw  E T S o (sin(B4sa)t

Sir William Thomson has calculated the force between two
spheres of equal radius separated by any distance less than the
diameter of one of them. For greater distances it is not neeessary
to use more than two or three of the successive images,

The series for the differential coefficients of {he q’s with respect
to ¢ are easily obtained by direct differentiation
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W _ _ 26%0e 2a0%e (201202 —af) o

de — T (=R T (P=0% tac)? (2 —b% —ac)? N

dgw ab @b (3c2—a?—b?)

7 ¢ (¢t —a?--0%)
@b {5 —at 0% (¢ —a? =0 —a? i} o
R I Al i

dgu, _  2ab% 2a%03¢(2c¢2—2a%~0%) &

de — T (F—a?)? T (cF—at + bo)? (2 —at—be)? )

Distribution of Electricity on Two Spheres in Contact.

175.] If we suppose the two spheres at potential unity and not
influenced by any other point, then, if we invert the system with
respect to the point of contact, we shall have two parallel planes,

. 1 . . . o
distant s and »2»1»& from the point of inversion, and electrified by

the action of a unit of electricity at that point.
There will be a series of positive images, each equal to unity, at

distances -y(% + %) from the origin, where ¢ may have any integer

value from —oo to + oo,
There will also be a series of negative images cach equal to —1,
the distances of which from the origin, reckoned in the direction of

1 1 1
a, are 2 +3(; + Z)
When this system ig inverted back again into the form of the

two spheres in contact, we have a corresponding series of negative
images, the distances of which from the point of contact are of the

form -—11—-1—, where ¢ is positive for the sphere 4 and negative
*G+7)
for the sphere B. The charge of each image, when the potential
of the spheres is unity, is numerically equal to its distance from the
point of contact, and is always ncgative.
There will also be a scries of positive images whose distances
from the point of contact measured in the direction of the centre

of a, are of the form — L .

L4 3)

a a b

When ¢ is zero, or a positive integer, the image is in the sphere 4.
When s is a negative integer the image is in the sphere 5.
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The charge of cach image ig measured by its distanee from the
origin and ig always positive,

The total charge of the sphere .f js therefore
. 2200 1 th @r=w
be = Euo VIS Nl > g
~ 8- 4 2
a a4

in the form
o= S0t
L = 2«'-—-1 s (a4 0) (s(d—{-&)—-(l) ;
rging.,
e find for the ¢

the series hecomes conve
In the same way w harge of the sphere 3,
, = al ) or=wy 1
b= 2 iy 5
f=a ab?
=30 (@t 0) s 1) ~45
The values of L, ang 7, are

in termg of known functions, Their differene
expressed, for

. =0 ab
]5:‘— iy = 2‘:_‘” mm—é—) ’
mab wh
o0 Ty
r'es are equal the charge of eacly foy Dotential unity
f=0
]9:‘ =« 2::1 72;'(2':\__1)‘ y
=a(l—444y +&e.),

=« l()g‘ﬁ 2 =1.0986 .
When the sphere

the charge oy 1 s

1
not, 50 far g4 1 know, expressible '

e, however, iy casily

=

When the sphe
is

IS very small compuared with {he sphere
@ Qi=a ]
L, = i 15 Approximately
s=1 g~ v
7wl ol
[
or f ="

a« = T

6 ¢

The charge on 7 jg hearly the same g5 if

A werg removed, or
Iy = 0.

nsity on cach sphe
In this way

The mean qe re is found by
by the surface,

dividing the charge
we oot
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o= e o T
“ dra® 2140
g o= A _ 1
b dmd= " dxwl)

>
T, = "6 Ty,

Ienee, if o very small sphere is made to touch a very large one,
the mean density on the small sphere is equal to that on the large
2

sphere multiplied by %, or 1.641936.

Application of Klectrical fnversion to the case of a Spherical Bowd,

176.] One of the most remarkable illustrations of the power of
Sir W. Thomson’s method of Electrical Tmages is furnished by his
investigation of the distribution of clectricity on a portion of a
spherical surface hounded by a small circle. The results of this
nvestigation, without proof, were communicated to M. Liouville
and published in his Journel in 1847. The complete investigation
is given in the reprint of Thomson’s Kectricul Pupers, Article XV,
I am not aware that a solution of the problem of the distribution
of clectricity on a finite portion of any curved surface has been
given by any other mathematician.

As I wish to explain the method rather than to verify the
calculation, I shall not enter at length into cither the geometry
or the integration, but refer my readers to Thomson’s work.

Distribution of Electricily on an Ellipsoid.

177.] It is shewn by a well-known method * that the attraction
of a shell bounded by two similar and similarly situated and
coneentrie ellipsoids is such that there is no resultant attraction
on any point within the shell. If we suppose the thickness of
the shell to diminish indefinitely while its density increases, we
ultimately arrive at the conception of a surface-density varying
as the perpendicular from the centre on the tangent plane, and
sinee the resultant attraction of this superficial distribution on any
point within the ellipsoid is zero, clectricity, if so distributed on
the surface, will be in equilibrium.

Henee, the surfiuce-density at any point of an ellipsoid undis-
turbed by external influence varies as the distance of the tangent
Plane from the centre,

* Thomson and Tait's Nafural Philosophy, § 520, or Art. 150 of this book.
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Distribution of Blectricity on a Disk,

By making two of the axes of the cllipsoid equal, and making
the third vanish, we arrive at the case of a cireulur disk, and at an
expression for the surface-density at any point 2 of such a disk
when eleetrified to the potential /" und left undisturhed by external
influence, If ¢ he the surface-density on one side of the disk,

and if APZ be a chord drawn through the point P2, then
o=V .
272/ AP PL
Application of the Prineiple of Electric Inversion.

178.] Take any point Q as the centre of inversion, and let 2
be the radius of the sphere of inversion. Then the plane of the
disk becomes a spherical surface passing through @, and the disk
itself becomes a portion of the spherical surface bounded by a ecircle,
We shall call this portion of the surface the Jowd,

It 8 is the disk electrified to potential 7 and free from external
influence, then its electrical image 8 will be a spherical segment at
potential zero, and clectrified by the influence of quantity F'R of
electricity placed at Q.

We have therefore by the process of inversion obtained the
solution of the problem of the distribution of clectricity on g
bowl or a plane disk when under the influence of an electrified
point in the surface of the sphere or plane produced.

Influence of an Lleetrified Point placed on the wunoccupied part of the
Spherical Surface.

The form of the solution, as deduced by the principles already
given and by the geometry of inversion, is as follows :

If C is the central point or pole of the spherical bowl §, ang
if @ is the distance from ¢ to any point in the edge of the segment,
then, if a quantity g of clectricity is placed at a point @ in the
surface of the sphere produced, and if the bowl § is maintained
at potential zero, the density o at any point P of the bowl will be

r=_1 7 CQ2 42
eE o N megm

C@, CP,and QP being the straight lines Joining the points, ¢ Q,
and 2,

It is remarkable that this ¢xpression is independent of the radius
of the spherical surface of which the bowl is a part. It is therefore
applicable without alteration to the case of a plane disk,
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Influence of any Number of Electrified Points,

Now let us eonsider the sphere as divided into two parts, one of
which, the spherical segment on which we have determined the
electric distribution, we shall call the dow/, and the other the
remainder, or unoccupied part of the sphere on which the in-
fluencing point @ is placed, .

If any number of influencing points are placed on the remainder
of the sphere, the electricity induced by these on any point of the
bowl may be obtained by the summation of the densities induced
by each separately.

179.] Let the whole of the remaining surface of the sphere
be uniformly electrified, the surface-density heing p, then the
density at any point of the howl may Le oblained by ordinary
integration over the surface thus electrified.

We shall thus obtain the solution of the case in which the bowl
is at potential zero, and clectrified by the influence of the remaining
portion of the spherical surface rigidly electrified with density p.

Now let the whole system be insulated and placed within a
sphere of diameter /; and let this sphere be uniformly and rigidly
clectrified so that its surface-density is .

There will be no resultant foree within this sphere, and therefore
the distribution of electricity on the bowl will be unaltered, but
the potential of all points within the sphere will be increased by
o quantity » where

Henece the potential at every point of the bow! will now be 7.

Now let us supposc that this sphere is concentric with the sphere
of which the bowl forms a part, and that its radius exceeds that
of the latter sphere by an infinitely small quantity.

We have now the case of the bowl maintained at potential /“and
influenced by the remainder of the sphere rigidly electrified with
superficial density p+p’,

180.] We have now only to suppose p+p'= 0, and we get the
case of the bowl maintained at potential 7 and free from external
influence.

If o is the density on either surface of the howl at a given point
when the Lowl is at potential zero, and is influenced by the rest
of the sphere electrified to density p, then, when the bowl is main-
tained at potential 7, we must increase the density on the outside
of the bowl by 4/, the density on the supposed enveloping sphere.
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The result of this Investigation is {hat if /' is the diamcter of
the sphere, @ the chord of the radins of the bowl, and # the chord
of the distance of p from the pole of the bowl, then the surface.
density o on the inside of the howl is

I Fe gt s2 2
=, { L T —tan-! 'Z.;,-.,.(.‘;—},
2nt azl e PR
and the surfaee-density on the outside of the bow] at the same
point is I
o ——
2n/

In the calculation of this result no operation is employed more
abstruse than ordinary integration over part of a spherical surface,
To complete the theory of the clectrification of a spherical howl
we only require the geometry of the inversion of spherical surfaces.

18L.] Let it be required to find the surface-density induced af
any point of the bowl by a quantity g of eleetricity placed at 4
point @, not now in the spherieal surface produced,

Invert the bowl with respeet to @, the radius of the sphere of
inversion heing R, The bowl § will be inverted into its image §7,
and the point P will have £ for its image.  We have now to
determine the density o’ ut 2 when {he bowl 8 is maintained at
potential 77 guel ¢t ¢ =/"K, and is not influenced by any
external foree,

The density o at the point. 2 of he original bowl is then
a [

Q_/)E! ’
this bow] heing ot potential zero, and influenced by a quantity q of
electricity placed at Q.

The result of this process is as follows :

Let the figure represent a section

J == —

LT \,’\ throngh the centre, O, of the sphere,
1_7[! R \ / N\ the pole, ¢, of the bowl, and the in-
RN e \ fluencing  point Q. 1) is a yoint
AN which corresponds in the inverted

- Ol I Migure to the unoccupied pole of the

/_ﬁ..,_a.\_.B___;_;- fe rim of the bowl, and may be found

E ‘
\ Y \\ / by the following construction,
N \ pal Draw through Q the chords £Q
N _‘___l“/ and FQI”, then if we suppose the
(&

radius of the sphere of inversion to
be a mean proportional hetween the
segments into which a chord is divided at @, A"/ will he the

Fig. 16, »
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image of EF. Bisect the ave F/CE’ in I, so that F'I/ =1 £, and
draw J'QD to meet the sphere in 2. 4 is the point required,
Also through 0, the centre of the sphere, and Q daw Z{OQH’
meeting the sphere in 2/ and 7/°. Then if P be any poiut in the
bowl, the surface-density at P on the side which is separated from
@ by the completed splierical surface, induced by a quantity 4 of
clectricity at @, will be

_ ¢ QIU.QIU (PQ CD*—at tan-1 []’Q Cl?—a? 5]}

= on 211 p VQ e =ep) — | 6 ) |
where @ denotes the chord drawn from €, the pole of the bowl,
to the rim of the bowl,

On the side next to @ the surfuce-density is

¢ QILQI
Sa% 1L PO

VOL. 1. Q




CHAPTER XI1,
THEORY OF CONJUGATE FUNCTIONS [y TWO DIMENSIONS,

182.] Tur number of independent, eases in which the problem
of clectrical equilibrium has heen solved 15 very small. The method
of spherical harmonies has been employed for spherieal conductors,
and the methods of electrienl images and of inversion are still more
powerful in the cases to which they can he applied. The ease of
surfaces of the second degree is the only one, as far as I know,
in which both the squipotential surfaces and the lines of foree are
known when the lines of force are not plane curves,

But there is an Important, class of problems in the theory of
clectrical cquilibrium, and in that of the conduction of currents,
in which we have to consider spuce of two dimensions only.

For instance, if throughout the part of the electric fielg under
consideration, and for g considerable distance heyond it, the surfaces
of all the conductors are generated by the motion of straight lines
parallel to the axis of % and if the part of the field where this
ceases to be the case is so far from the part considered that the
electrical action of the distant part on the field may he neglected,
then the clectricity will e uniformly distributed along each gene-
rating line, and if we consider 2 part of the field hounded hy two
Planes perpendicular to 16 axis of = and at distance unity, the
potential and the distribution of electricity will e functions of 4

and y only,

If pdr dy denotes the quantity of electricity in un clement whose
base is die dy and height unity, and o ds he quantity on an element, -
of area whose base js the linear element o/ and height unity, then
the equation of Pojsson may be written

VAN AEY " — 0
(./I':T -+ 77; + 7.'[) = U,
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When there is no free clectricity, this is reduced to the equation
of Laplace, A2V a2y
de? dyt T

The general problem of electrie equilibrium may be stated as
follows :—

A continuous space of two dimensions, bounded by closed curves
1y Gy, &e. being given, to find the form of a function, ) such that
al these boundaries its value may be 17, 7, &e. respectively, being
constant for cach boundary, and that within this space / may be
everywhere finite, continuous, and single valued, and may satisfy
Laplace’s equation,

I am not aware that any perfectly general solution of even this
question has been given, but the method of transformation given in
Art. 190 is applicable o this case, and is much more powerful than
any known method applicable to three dimensions.

The method depends on the properties of conjugate functions of
two variables,

Definition of Conjugale Functions,

183.] Two guantitics a and 3 are said to be conjugate functions
of v and y, if a++/—1 B8 1is a function of v + «/—=1 .
1t follows from this definition that

da {8 da dp
B =gy W =0 (1)
d*a  dia 11"/3 d* B

. == — — = 0, 2
da® + dy? o s dy* { (2)

Hence both functions satisfy Laplace’s equation.  Also

dadp _dadp _da* da’®_ dp* ap’_ e

de dy " dy de T dv, VI T e dy (3)

If' & and y are rectangular coordinates, and if' s, is the intercept
of the curve (8 = constunt) hetween the curves a and a+ da, and
ds, the intercept of a hetween the curves 5 and g +d3, then

da —d3 = R’
and the curves intersect at right angles.

If we suppose the potential /" =77, + ka, where 4 is some con-
stant, then /7 will sutisty Laplace’s equation, and the curves (a) will
be equipotential curves. The curves (3) will be lines of force, and

Q2

dyy s, 1 (4)
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the surface-integral of a surface whose Drojection on the plane of
&y is the curve A8 will be £ (Bis—f.4), where Ba and By, are the
values of 8 at the extremitios of the curve,

If a series of enrves correspouding to values of o in arithmetiecal
progression is drawn on the plane, and another series corresponding:
to a series of values of A having the same common difference, then
the two series of curves will everywhere interseet at right angles,
and, if the common difference s small enough, the clements into
which the plane is divided will he ultimately little squares, whose
sides, in diflerent parts of the field, are in different divections and of
different magnitude, heing: Inversely proportional to /.

If two or more of the equipotential lines (a) are closed curves
enclosing a continuous space hetween them, we may take these for
the surfaces of conductors at potentials (/1 + fa)), (Fy+hay), &e.
respectively.  The quantity of electricity upon any one of these

d.

between the lines of foree By and B, will e 7= (B:—5,).
A

The number of equipotential lines hetween two conductors will
therefore indieate their difforence of potential, and the number of
lines of force which emerge from 2 conductor wil indicate the ¥
quantity of electricity upon i,

We must next state some of the most important theorems
relating 1o conjugate tunctions, and in proving them we may use
either the cquations (1), containing the differential coeflicients, or
the original definition, which makes use of imaginary symbols,

184.] Turorem T, I and g wre conjugate functions with respeet
tox and y, and I and y are also conjugate functions with
respect to w and gy, thew the Junelions &+ and I +y will
be conjugate functions with respect o @ and .

e’y da” dy”

For - o= - and - =
Y de " dy’ e Iz dy’

Wi ('j,'l + ‘lf”) _ I/(.//I—}-'I/".)

herefore i
therefore e 7 :
{2 dy’ da” dy”
Als ( = - H —_— = ~M.
Also dy 4y and 7 s
therefore A2y _ Ay +y)

dy - Tde T

ore +2” and ' 457 are conjugate with respect to 2 and 2
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Graphie Representation of a Function which is the Sum of Two
Given Functions,

Let a fanetion (a) of 2 and y he graphieally represented by a
series of curves in the plane of 2y, cach of these curves corre-
sponding fo a value of a which helongs to a series of such values
increasing by a common diflerenee, 3.

Let any other funetion, B, of & and 7 be represented in the same
way by a series of curves corresponding to a series of values of B
having the same common diflerence as those of a.

Then to represent the function a+/3 in the same way, we must
draw a series of curves through the intersections of the two former
series from the interseetion of the curves (o) and (18) to that of the
curves (a-+8) and (83—38), then through the intersection of (a+28)
and (8—23), and so on. At each of these points the funetion will
have the same value, namely a8, The next curve must be drawn
through the points of intersection of @ and g+3, of a4 8 and B,
of a428 and B~38, and so on. The function helonging to this
curve will be a+ 3+ 8.

In this way, when the series of curves (a) and the series () arve
drawn, the series (a+ ) may be constructed.  These three series of
curves may be drawn on separate picces of transparent paper, and
when the first and second have been properly superposed, the third
may be drawn.

The combination of conjugate functions by addition in this way
enables us to draw figures of many interesting eases with very
little trouble when we know how to draw the simpler cases of
which they are compounded. We have, however, a far more
powerful method of transformation of solutions, depending on the
following theorem.

185.] Turonex IT. fr'a” awd y" are conjugate functions with
respect to e variables &' aud g’y and {f 2’ and y are conjugate
Sunelions wilh respect fo ® and y, then " and 3" will be con-
Jugale functions with respect lo a and y.

For da” o daf + de” dy ,

dr e’ dae " dy d

Ay’ dy dy”

= Wyt

dy”

Ay
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and r/.'r’f o + Aoy
s Tyt
dy” dy dy” dy

dy de A’ dy’

dy”

- dr

and these arce the conditions that 27 and »” should le conjugate

functions of 2 and 4.
This may also be shewn from the original definition of conjugate

functions,  For 2”4 —1y” is a function of 4’4 V=14, and
4+ /?ly' is a fanction of 2 + vy Henee, 2+ Vv =1y
is a function of 2+ J;i'y.

In the same way we may shew that if 27 and Y’ are conjugate
functions of 2 and 7> then 2 and y are conjugate functions of 4
and 7.

This theorem may he interpreted graphically as follows :—

Let 2%, y* be taken as rectangular coordinates, and lef, the curves
corresponding to values of 2 and of 4 taken in regular arithmetical
series be drawn on paper. A double system of curves will thus he
drawn entting the paper into little Squares.  Let the paper be also
ruled with horizontal and vertical lines at equal intervals, and Jot
these lines be marked with the corresponding' values of 27 and Ve

Next, let another picee of paper be taken in which 2 and ¥ arce
made rectangular coordinates and a double system of curves oy
is drawn, cach curve being marked with {he corresponding value
of a’or 7. This system of curvilinear coordinates will correspond,
point, for point, to the rectilincar system of coordinates 2, 4" on the
first picee of paper.

Ilence, if we take any number of points on the eurve 2 on the
first paper, and note the values of v and » at these points, and
mark the corresponding points on the second paper, we shall {ind
a number of points on the transformod carve 2”7 If we do the
same for all the curves 27, J7 on the fivst paper, we shall obtain on
the second paper a double series of awves ., v of a diflerent form,
but having the same property of cutting the paper into little
squares.
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186.] Turorew IIL. J/' 1" is any fonction of o and y', and if o
and y' are conjugale functions of @ and y, then
W (/ I f dEV AP,
TG+ e = [ Gz R,
the Integration 7101)/_// between the same limits,
For Al _ i AT dy
di = dat de T dy’ dx’
P Ty Iy A
de " da’ N A dy’ do de T dyF dey
AT Al dy
de de* T dy dat?

21T / A\ AR A dy @ d)

_—— e e e o SR

A = A dy. d'dy’ dy dy " dy™ dy,
A" d*a + dl” d4y
dat TF ¥y ap

and

Adding the last two equations, and remembering the conditions

of conjugate functions (1), we find

acrarr Azl e ;/—.1_';:Z dl” (_/_1/—'2 (//'l
WE g T (';/.,:! + iy, )+—,//= (;z..; + (/J,)

BV da dytda dyf
- (I/.L" dy’ ~) (der dy — dy (/v)
Henee

dElT AR T [ BTN A2 Ay Y dy's |
// (T/z—- + (Z)jé'){/'l' “y =// ((/.u’ dy’* )(dm dy ~ dy (lv)(/'L (2
VUL
Jrase
If I”is a potential, then, by Poisson s equation

o rr o7
a=/ /_77) 4 dmp =0,
r/z- dy?

and we may write the result

~

// pdrdy = U pdy dy’,
> portions of two

or the quantity of clectricity in corresponding
systems is the same if the coordinates of one system are conjugate

functions of those of the other.
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Additional Theorems on Conjugate Functions,

187.] Trnrorey TV. W ay and yy, and also z, and y,, are con-
Jugete functions of @ and y, lhen, if
Y=ne0—py, and ¥ Yt 2y,

X and ¥ will te conjugate functions of x and y.

For X4+ V07 = (#, + -s/:fy,) (4 v/ —1y,).

TuroreM V. 77 ¢ be « solution of the equation
(l{d_) a* ¢

ez T dy

w =0,

o d¢

a1 (A g e
and if 3R = log(-{lmzli + | ), and @ = tan 75

dy

L and © will he conjugate functions of 2 and y.

For R and © are conjugate functions of (7]/;/:

and ((,/:l), and these
arc conjugate functions of 2 and I 4

Exayrrg L—Tuversion,

188.] As an example of the gener.

al method of transformation
let us take the case of inversion in two

dimensions,
If 0 is a fixed point in a plane, and 04 5 fixed direction, and
if r=0pP = acfy and 0 = A0P, and if x,

7 are the rectangular
coordinates of P with respect to 0,

p= loglx/arz—fy/'—', 0= tan-17,
@ x
T = aefcos, Y = aer sin g,

p and 0 are conjugate functions of z and -
Ifp' = #pand ¢ = 20, p’ and € will he conjugate functions of p
and 6. In the case in which 7 = —1 we have

(5)

o
-

’

7~=“7, and ¢ =_g, (6)

which is the case of ordinary inversion combined with turning the
figure 180° round 0.
Inversion. in Tiwo Dimensions.

In {his case if » and 5 represent the distances of corresponding:
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points from O, e and ¢ the total clectrification of a body, § and 8
superficial elements, / and 77 solid clements, ¢ and o surface-
densities, p” and p” volume densities, ¢ and ¢’ corresponding po-
tentials,

P8 at | AP S
P SHT TR T A
e a2 a2 P 4 gt .
e =l aEwTm = asm ()
7
[4}]

Exanerr IL.—Zlectric Images in Tiwo Dimensions.

189.] Let 4 be the centre of a cirele of radius 4Q = &, and let
F be a charge at 4, then the potential
at any point P is

b
¢ =2Flog ik (8)
and if the circle is a section of a hollow
conducting cylinder, the surface-density
at any t —_— Tig. 17.
1t any point @ is P /4
Invert the system with respect to a point 0, making

A0 = mb, and a® = (m2—1)0%;

0
then we have a charge at 4 equal to that at 4, where 44’ = — -

n
The density at Q” is
E 2—A4}
Tl AQr
and the potential at any point 7 within the circle is

¢ =¢ = 27 (log b—log A P),
= 27 (log O —log A" P'—log m). (9)
This is equivalent to a combination of a charge 7 at 4’, and a
charge —F at 0, which is the image of 4°, with respect to the
circle.  The imaginary charge at O is equal and opposite to that
at A’
If the point P’ is defined by its polar coordinates referred to the
centre of the cirele, and if we put
p=logr—logd, and p,= logA4"—log b,
then AP = ber, AA" = bero, AOQ = bero; (10)
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and the potential at the point (m 0) 1s
¢ = Llog(e=2—9e=°0p ong 0+ %)
= 1og (20— 2 ppu pp o ) +e) 20, (1 1)

This is the potential at. the point (p, 0) due"to a charge £, placed
at the point (p,, 0), with the condition that when p = o, ¢ = 0.

In this ease p and 0 are the conjugate functions in equations (5)
p is the logarithm of the ratio of the radius vector of a point to
the radins of {he cirele, and 0 15 an angle,

The centre is the only singular point in thig system of coordinates,

. - .
and the line-integral of / y s round a closed earve is zero or 27,
Jodds

according as the closed curve excludes oy includes the centre,

Exayvre ITL—Newmani’s Transformation of this Cuse *.

190.] Now let a and 8 he any conjugate functions of & and V2
such that the curves (a) are equipotential curves, and the curves
(B) are lines of foree due to a system consisting of g charge of half
A it at the origin, and an eleetrified System disposed in any
mamner at a certain distance from (he origrin,

Let us suppose that the caryve for which the potential js a, 1s
a elosed curve, such that no part of the eleetrified system except, the
hall=anit at the origin lies within this curve,

Then all the curves («) hetween this curve and the origin will he
closed curves surrounding the origin, and all the curves (3) will
meet in the origin, and will cut the curves (a) orthogonally,

The coordinates of any point within the curve (a,) will he determ-
ined by the values of « and 8 at that point, and if the point travels
round one of the eurves a in the positive direetion, the value of A
will increase by 27 for each complete eircuit,

If we now suppose the curve (¢)) to be the seetion of the inner
surface of a hollow cylinder of any form maintained at potential
zero under the influence of a charge of lincar density £ on a line of
which the origin is the prajection, then we may leave the external
clectrified system out of consideration, and we have for the potential
at any point («) within the curve

¢ = 2F(a—aq,), (12)
and for the quantity of electricity on any part of the curve a,
between the points corresponding to 8, and Bas

Q = 205(8,~p,). (13)

* See Crelle's Journal, 1861
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If in this way, or in any other, we have determined the dis-
tribution of potential for the case of a given curve of seetion when
the charge is placed at a given point taken as origin, we may pass
to the ease in which the charge is placed at any other point by an
application of the general method of transformation.

Let the values of @ and B for the point at which the charge is
placed be a) and 3, then substituting in equation (11) a—a, for p,
and B—p3, for 0, we find for the potential at any point whose co-
ordinates arc a and fj,

>

b = Flog (1—2¢2-acos (B —P)) + ¢2 @)
—Flog (1 =2t~ cos (B—f3,) + e*i*ra—20) 4 2 T (¢, —a,). (14)

This expression for the potential becomes zero when a=a,, and is
finite and continuous within the curve a, except at the point o, 8,
at which point the first term becomes infinite, and in its immediate
neighbourhoad is ultimately equal to 2 Flog », where # is the
distance from that: point.

We have therefore obtained the means of deducing the solution
of Green’s problem for a charge at. any point within a closed curve
when the solution for a charge at any other point is known.

The charge induced upon an clement of the curve a, between the
points B and B++/3 by a charge / placed at the point a; 3, is

r 1 —e#ia=a)
T vtk -1 15
27 1 —2etr™ i eos (3 3,) etiama (15)

From this expression we may find the potential at any point
a, 3, within the closed eurve, when the value of the potential at
every point of the closed enrve is given as a function of B, and
there is no clectrification within the closed enrve,

For, by Theorem IT of Chap. TTI, the part of the potential at
a; A, due to the maintenance of the portion «/8 of the closed curve
at- the potential 77, is 277, where # is the charge induced on d3 by
it of electrification at a; 8. Ience, if 77 is the potential at a
point on the closed curve defined as a function of 8, and ¢ the
potential at the point @, 3, within the closed curve, there being no
clectrification within the curve,

b = 2, 1—2elm=a) cos (B—PB) + ¢Ala—a
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Exasrre IV.—Distribution of Electricity near an Fdge of a
Conduetor formed by Tuo Plane Fuees,

1917 In the ease of an infinite plane face of i eonduetor charged
with electricity to the surface-density Ty We find for the potential
at a distance y from the plane

I'=0_4 7Oy,

where C'is the value of the Potential of the conductoy itself.
Assume a straight, line

in the plane as g polar axis, and transform
into polar eoordinates, and we find for the potential

I'=(C—4 Ty @ e sin
and for the quantity of ¢

leetricity on g parallelogram of hreadth
unity, and length azer me

asured from the axjg
L= o aer,

Now let us make p=ny and 9

conjugate to p and 0, the equations

= a0, then, since p and 0 are

V"= C—y4 Ty € sin n 0
and L= g uem

express a possible distribution of‘vloctricity and of potential,

If we write » for ae?, rwill he the distance from {ho axis, and
0 the angle, and we shall have
%l

" — V'_A -~ — -. %
I'=C—14 To 5T S0,

1.“

I = Ty oyt
{1"

7" will be equal to ¢ whenever 20 = 7 oy

v a multiple of 7.

Let the edge be a salient, angle of the conductor, the inelinatjon
of the faces being a, then the angle of the dieleetrie ig 27 —aq, s0
that when 0=27_¢4 {heo point is in the other face of the conductor.
We must, therefore make

™

"(27—a) = Ty Or g =~

2m—a
™
. P\ETme o mp
Then I'=¢—y T, u ) S oo
a T—a

”
—_—
if—a

r !
= 0, (») .
0 “

The surface-density o at any distance » from the edge is

a-—mw
o - im—a

™ p
I = — .7 () .
dr = 2qp_q "o\,
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When the angle is a salient one a is less than 7, and the surface-
density varies according to some inverse power of the distance
from the edge, so that at the edge itself the density becomes
infinite, although the whole charge reckoned from the edge to any
finite distance trom 1t is always finite.

Thus, when a=0 the edge is infinitely sharp, like the edge of a
mathematical plane. In this case the densily varies inversely as
the square root of the distancc from the edge.

r u P . . .
When a= the edge is like that of an equilateral prism, and the

density varies inversely as the 2 power of the distance.

. ™ . . o
When a = the edge is a right angle, and the density is in-

versely as the cube root of the distance.
2 .- . .
When a= " the edge is like that of a regular hexagonal prisi,

and the density is inversely as the fourth root of the distance.

When a = n the edge is obliterated, and the density is constant,

When a= 4 7 the edge is like that in the inside of the hexagonal
prism, and the density is directdy as the square root of the distance
from the edge.

When a=# 7 the edge is a re-entrant right angle, and the density
is direetly as the distance from the edge.

When a=5 7 the edge is a re-entrant angle of 60° and the
density is directly as the square of the distance from the edge.

In reality, in all cases in which the density becomes infinite at
any point, there is a discharge of clectricity into the diclectric at
that point, as is explained in Art. 53,

Exasere Vi—Z2dlipses and Hyperbolas. Tig. X.
192.1 We have seen that if
& = ¢ cos gy = et siny, (1)
 and # will be conjugate functions of ¢ and .
Also, if ay, = =% cos ), Yy = —e~P sing, (2)
wy and g, will be conjugate functions. Ilence, if
2e=a,+a,=(e* +¢%) cos ), 2y=y+ yo=(et—e"*sin g, (3)

« and y will also be conjugate functions of ¢ and .
In this case the points for which ¢ is constant lie in the ellipse
whose axes are ¢* +e¢~% and ¢» — %,
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The points for whiel, ¥ s constant lie in the hyperbols whose
axesare  2cosyr and 9 sy Y.
On the axis of ry between g = — and o =4 1,
=0, Vo= cos—1.p, (+)

On the axis of beyond these limigs o cither side, wo have

S> V=0, R T R 1), (5) |
< —1, V=, ¢ = 1()g'(\',13—]~.v). l

Henee, if ¢ is the potential function, ang v the function of flow,
we have the case of clectrieity Nowing from the negative {o the
bositive side of the axis of . through the spiace between the points
—1 and +1, the parts of the axis beyond  these limits l»uiug i
impervious to eleetricity,

Since, in this sty the axis of y is o line of flow, we may suppose
it also impervious to electrieity, :

We may also consider the ellipses to e scetions of the equi- :
potential surlaces due 1o gp indefinitely long flat conductor of ‘
breadth 2, chareed wit 1, half o nnit of eleetricity per unit of length,

It we make ¥ the potential funetion, ang $ the function of flow,
the case becomes that of an - infinite plane from which a strip of
breadth 2 has been et away and the plane on one sjde chargad to
potential = while the othep remains at zero,

These cases may be considered ay particular cases of t)e quadric
surfaces treated of ip Chapter X. Phe forms of the curves ape

given in Fig, X,

Lxamerg VI—Fig. XTI
193.7 Let us next consider ¢ and 47 as functions of ¢ and y, where

S Y .
&= b log \/.1-3+.//'~', ¥ = btan—1 W (6)

“and g will e also conjugate functions of ¢ and .

The curves resulting from e transformation of Fig. X witn
respect to these new coordinates are given in i, X1,

1t 47 and 4 are rectangulyy coordinates, then the properties of the

axis of v in the fipst figure will belong to a series of lnes paralicl
to " in the second figure for which S =0’z where o Is any
infogoer.

The positive values of .« on these lines will correspond to vylyes
of & greater than unity, for which, as we have alr ady scen,

Vr= $ = lng' (@ 2 1) = ]o;_( (,,Z+ \/(' L. l). (7)
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The negutive values of @” on the same lines will correspoud to
values of w less than unity, for which, as we have see n,
-
¢ =0, Y= cos e = cos et (3)
The properties of the axis of y in the first figure will belong o
a series of lines in the second figure parallel to &, for which
S o= b4, (0)
The value of yr along these lines is ¢ = 7 (x4 1) for all points
hoth positive and negative, and

(p_]on(J—i-\///-—f-l)_low(u"-}—\ ('” -}-J) (10)

194.] T8 we consider ¢ as the potential function, and yr as the
function of flow, we may consider the ease to he that of an in-
definitely long strip of metal of breadth %4 with a non-conducting
division extending from the origin indefinitely in the positive
direction, and thus dividing the positive part of the strip into two
separate channels.  We may suppose this division to he a narrow
slit in the sheet of metal,

If a current of cleetricity is made to flow along onc of these
divisions and Dback again along the other, the entrance and exit of
the current being at an indefinite distanee on the positive side of
the origin, the distribution of potential and of current will he given
by the functions ¢ and  respectively,

If, on the other hand, we make y the potential, and ¢ the
function of flow, then the case will be that of a current in the
general direction of y, flowing through a sheet in which a number
of non-conducting divisions arc placed parallel to &, extending from
the axis of y to an indelinite distanee in the negative direction,

195.] We may also apply the results to two lmpmt.mt cuses in
statical clectricity,

(1) Let @ conductor in the form of a plane sheet, hounded by a
struight edge but otherwise unlimited, be placed in the plane of ez
on the positive side of the origin, and let two infinite conducting:
planes be placed parallel to it and at distances {74 on cither side.
Then, it Y 15 the potentinl function, its value is 0 for the middle
conductor and 4 % for the two planes,

Let us consider the quantity of clectricity on a part. of the middle
conductor, extending to a distance 1 in the direction of 2, and from
the origin to w = a.

The clectrieity on the part of this strip extending from ay to @,

1
e (‘l’:_ &)
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Hence from the origin to 2= a the amount is

B tog (g '), (11)
Ifuis large compared with 4, this becomes

] 13
I = log2 ew
‘} T (el 3

- 40 logj__:z' (12)
17wl

Henee the quantity of electricity on {he plane bounded by the
straight edge is greater than it would have been if the electricit
had been uniformly distributed over it witl, the same density that
it has at a distance from the houndary, and it is equal to the
quantity of electricity having the same uniform surface-density,
but extending to a breadth equal to lor, 2 beyond the actual
boundary of the plate.

This imaginary uniforn, distribution is indicated by the dotted
straight lines in Fig. XI. The vertical Jines represent lines of
force, and the horizontal lines ¢quipotential surfaces, on the hypo-
thesis that the density is uniform over hoth planes, produced to
infinity in all directions,

196.] Dlectrical condensers are sometimes formed of o plate
placed midway between two parallel plates extending considerably
beyond the intermediate one on all sides,  1f the radius of curvature
of the boundary of the intermediate plate is great compared witly
the distance between the plates, we may treat the boundary ag
approximately a straight line, and caleulate the capacily of the
condenser by supposing' the intermediate Plate to have its areq
extended by a strip of uniform breadth round its houndary, and
assuming the surface-density on the extended Plate the same ug
it is in the parts not near the boundary,

Thus, if § be the actual area of the plate, / jts circumference,
and /2 the distance hetween the large plates, we have

b="u, (13)
v
and the breadth of the additional strip 1s
_ log, 2

a = -])', (14)

i
>0 that the extended area is
1 ~
8" =S8+ Bl - log. 2. (15)

™
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The capacity of the middle plate is
18 1,8 1
— = - . 16
2n BB Zw{B+L7rIOg"2} (16)

Correction for the Thickness of the Plate.

Since the middle plate is generally of a thickness which cannot
be neglected in comparison with the distance between the plates,
we may obtain a better representation of the facts of the case by
supposing the section of the intermediate plate to correspond with
the curve ¥ = ¢,

The plate will be of nearly uniform thickness, = 28y, at a
distance from the boundary, but will be rounded near the edge.

The position of the actual edge of the plate is found by putting

¥'= 0, whence o’'= 0 log cos . (17)
The value of ¢ at this edge is 0, and at a point for which 2’= a
it is a+blog, 2
s

Hence the quantity of electricity on the plate is the same as
if a sbrip of breadth = p 7B
= log, (2 cos é—ﬁ) (18)

had been added to the plate, the density being assumed to be every-
where the same as 1t is at a distance from the boundary.

Density near the Edge.

The surface-density at any point of the plate is

1 dgp 1 e’
T =i
e®—~1
1 il A
=m(1+1}e b4 2e b—-&c.). (19)

The quantity within brackets rapidly approaches unity as 2’
increases, so that at a distance from the boundary equal to 2 times
the breadth of the strip a, the actual density is greater than the

. 1 .
normal density by about ST of the normal density.

In like manner we may calculate the density on the infinite planes

=&

1 e
T 4mb 3y

(20)

v
'\/ b 41
When o’ =0, the density is 274 of the normal density.
VOL. 1. R
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At 2 times the breadth of the strip on the positive side, the

density is less than the normal density by ahout, e

At u times the breadth of the strip on the negative side, the

o . 1 .
density is about o of the normal density.

m

These results indicate the degree of aceuracy to be expected in
applying this method to plates of limited extent, or in which
Irregularities may exist not very far from the boundary. The same
distribution would exist in the case of an infinite series of similar
Plates at cqual distances, the potentials of these plates heing:
alternately + /7and — /7 Tn this ease we must take the distance
between the plates cqual to B,

197.] (2) The second case we shall consider is that of an infinite
series of planes parallel to 2z at distances J — b, and all cut off by
the plane of yz, so that they extend only on the negative side of this
plane.  If we muke ¢ the potential function, we may regard these
planes as conductors at potential zero,

Let us consider the eurves for which ¢ 1s constant,

When ¢ = nnb, that is, in the prolongation of each of the planes,

we have 2= blog § (¢b 4 o) @1
when y'= (n+44)4=, that 1%, in the intermediate positions
&'=blog § (et —c-), (22)

Hence, when ¢ is large, the curve for which ¢ is constant, is
an undulating line whose mean distance from the axis of VAT

approximately a = b(¢p~log, 2), (23)
and the amplitude of the undulations on cither side of this line js

L,t,‘: +¢ —h

$blog e (24)

-2

When ¢ is large this hecomes de =%, 50 that the curve approaches
to the form of a straight line parallel to the axis of " at a distance
@ from a4 on the positive side.

If we suppose a plane for which 2 = a, kept at a constant
potential while the system of parallel planes is kept at a different
Potential, then, since 4¢p = « - 4 log, 2, the surface-densily of
the clectricity induced on the plane is equal to that which would
have been induced on it by a plane parallel 1o itself at o potential
equal to that of the series of planes, but at 2 distance greater
than that of the edges of the plunes by & log 2,
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If B is the distance between two of the planes of the serics,

B = =, so that the additional distance is
L (25)
™

198.] Let us next consider the space included between two of
the equipotential surfaces, one of which consists of a series of parallel
waves, while the other corresponds to a large value of ¢, and may
Le considered as approximately plane.

If D is the depth of these undulations from the crest to the trough
of each wave, then we find for the corresponding value of ¢,

»
¢ = 3 log fz;—{:—l . (26)
e?— 1
The value of 2" at the crest of the wave is
blog 4 (¢b ). (27)

Ience, if A is the distance from the crests of the waves to the
opposite plane, the capacity of the system composed of the plane
surface and the undulated surface is the same as that of two planes
at a distance 4+ " where

. , B 2

a = = log, ——-—. (28)
14 c—ﬂ-‘}

199.] If a single groove of this form be made in a conductor
having the rest of its surface plane, and if the other conductor is
a plane surface at a distance 4, the capucity of the one eonductor
with respect to the other will he diminished. The amount of this

diminution will be less than the ;Lth part of the diminution due

to » such grooves side by side, for in the latter case the average
clectrical foree hetween the conductors will he less than in the
former case, so that the induction on the surface of each groove will
be diminished on account of the neighbouring grooves.

If 7, is the length, B the breadth, and J) the depth of the groove,
the capacity of a portion of the opposite plane whose area is § will be

8 Ly o

e (20)
4 drd.d+a
If 4 is large compared with 2 or «, the correction becomes
L B 2 .
=y 08, - b ’ (30)
lte &4

R 2
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and for a slit of infinite depth, putting ) = o, the correction is

L n
rpn i log, 2. (1)

To find the surface-density on the series of parallel plates we

must find « = .- ﬂ: when ¢ = 0. We find
17 do

The average density on the plane plate at distance 4 from the

. . . - 1 .
edges of the series of platesis 7 = = Henee, at a distance from
T

T

the edge of one of the pPlates equal to na the surface-density is

Jj'i—T- of this average density.

R00.] Let us next attempt to deduce from these results the
distribution of eleetricity in the figure formed Ly rotating the
plane of the figure about the axis J'=—R. TIn this case, Poisson’s
equation will assume the form

N A R %

— e — = 0. 33
T dy'*? + R+y dy Himp =0 (33)

Let us assume V=¢, the function given in Art, 193, and determine
the value of p from this cquation.  We know that the first two
terms disappear, and therefore

p=m— e (34)

If we suppose that, in addition to the surface-density already
investigated, there is a distribution of electricity in space according
to the law just stated, the distribution of potential will be repre-
sented by the curves in Fig. XI.

Now from this figure it is manifest that :%; is generally very

small except near the houndaries of the plates, so that the new
distribution may bLe approximately represented by what actually
exists, namely a certain superficial distribution near the edges of
the plates.

If therefore we integrate f f pda’dy’ between the limits Y =0and
¥ = gb, and from &=~ to g = +%0, we shall find the whole

additional charge on one side of the plates due to the curvature,
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Since A - dyr

Traat

+ o to | 1 (I\Il
o == e o
[,, P& Jw dm (B+Y) dr 2,

1 1 Y
= - mm—a (. . 3"
s sy (5~ (35)
Integrating with respect to y’, we find
o 1 1R0+B, R+DB

A 4 / = - ~—- = = ) 36
./0 [_ PRl =g -y ey (36)

1 B I
—_ 4 _&e 37
16 2 48 [i¥ e. (37)

This is the total quantity of clectricity which we must suppose
distributed in space near the positive side of one of the cylindric
plates per unit of circumference. Since it is only close to the edge
of the plate that the density is sensible, we may suppose it all
condensed on the surface of the plate without altering sensibly its
action on the opposed plane surface, and in caleulating the attraction
between that surface and the cylindric surface we may suppose this
electricity to helong to the eylindric surface.

The superficial eharge on the positive surface of the plate per
unit of length would have been —4, if there had been no curvature.

Hence this charge must be multiplied by the factor (1 + %%)
to get the total charge on the positive side.

In the case of a disk of radius R placed midway between iwo
infinite parallel plates at a distance 53, we find for the capacity
of the disk r

7?+2P§2R+§ﬂ (38)

Theory of Thomson’s Guard-ring.

201.] In some of Sir W. Thomson’s electrometers, a large plane
surface is kept at one potential, and at a distance 4 from this surface
is placed a plane disk of radius & surrounded by a large plane plate
called o Guard-ring with a cireular aperture of radius £’ concentrie
with the disk. This disk and plate are kept at potential zero.

The interval between the disk and the guard-plate may be
regarded as a circular groove of infinite depth, and of breadth
£’ — R, which we denote by 5.
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The charge on the disk due to unit potential of the large disk,
. . i R
supposing the density uniform, would he T
The charge on one side of a straight groove of breadth B and
length Z = 272, and of infinite depth, would he
, BB
YA+ad

But since the groove is not, straight, but has a radius of curvature
D s - B
£, this must be multiplied by the factor (] + 3 »]{")'

The whole charge on the disk is therefore

1?2 LB n
i tiayw O gp) (#9)
_Berr R-p L (40)
8 4 8 4 A+ad
The value of a cannot be greater than
o Blog 2

SR = . B early.
S 0.22 58 nearly

If B is small eompared with either A or 2 this expression will
give a sufliciently good approximation to the charge on the disk
due to unity of difference of potential.  The ratio of 4 to R
may have any value, but the radii of the large disk and of the
guard-ring must excced 72 by several multiples of 4.

Exavrie VII.—Fig. XII.

202.] Helmholtz, in his memoir on discontinuous fluid motion *,
has pointed out the application of several formulae in which the
coordinates are expressed as functions of the potential and its
conjugate function.

One of these may be applied to the case of an cleetrified plate
of finite size placed parallel to an infinite plane surface connected
with the earth.

Since z,=d¢ and = A+,
and also Zy=detcosy and 7, = Aetsinvy,
are conjugate functions of ¢ and ¥, the functions formed by adding
2y to 2, and y, to y, will be also conjugate.  Hence, if

2 = A ¢+ de* cosy,
J=dy+desinyg, .

* Kénigl. dkad. der Wissenschaften, zu Berlin, April 23, 1868.
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then 2 and 7 will be conjugate with respect to ¢ and y, and ¢ and
¥ will be conjugate with respect to x and y.

Now let & and 7 be rectangular coordinates, and let Ay be the
potential, then £¢ will be conjugate to £, & heing any constant,

Let us put = =, then g = Am, 2 = A (p—eh).

If ¢ varies from —co to 0, and then from 0 to 4, 2 varies
from —eo to —A4 and from —4 to —e. Hence the equipotential
surface for which 4y/=7 is a plane parallel to @ at a distance b= n.4

from the origin, and extending from — to ¥ = —A4.
Let us consider a portion of this plane, extending from
#=w—(dta)tor=—d4and fromz = 01loz =r¢,

let us suppose its distance from the plane of a2 to be y = b = Amn,
and its potential to be /"= &\ = /4.

The charge of eleetricity on any portion of this part of the plane
is found by ascertaining the values of ¢ at its extremities.

If these are ¢, and ¢, the quantity of electricity is

4’17—1, oA (¢y—bn)-
We have therefore to determine ¢ from the equation
2 =—(Ad40a) = d(p—et),
¢ will have a negative value ¢, and a positive value ¢, at the edge
of the plane, where v = — 4, ¢ = 0.
IIence the charge on the negative side is —e /% ¢, and that on

the positive side is ¢ £ ¢,
If we suppose that a is large compared with 4,

¢, = log{z- +1 +log(-f;— +1+&e.)}-

If we neglect the exponential terms in ¢, we shall find that the
charge on the negative surface exceeds that which it would have
if the superficial density had been uniform and equal to that at a
distance from the boundary, by a quantity equal to the charge on a

strip of breadth A = i with the uniform superficial density.

The total capacity of the part of the plane considered is

e
C= Ant (Pa—h)-
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The total charge is C¥, and the attraction towards the infinite
plane is

e €0 _ 1oy ac a -2
— 47 (15—1 4wt (1+1 /lln-(‘ e A+&‘“)
+ 78 4
I2e 02

log ~; +&e.} -

= {4 - — 2
41r0-’{ R

The equipotential lines and lines of force are given in Fig. XII.

Exasrerr VIIL—Z%eory of Grating of Parallel Wires. Fig. XIII.

203.] In many electrical instruments & wire grating is used to
prevent certain parts of the apparatus from being clectrified by
induction. We know that if a conductor be entirely surrounded
by a metallic vessel at the same potential with itself, no electricity
can be induced on the surface of the conductor by any electrified
body outside the vessel, The conductor, however, when completely
surrounded by metal, cannot be seen, and therefore, in certain cases,
an aperture is left which is covered with a grating of fine wire,
Let us investigate the effect of this grating in diminishing the
effect of clectrical induction. We shall suppose the grating to
consist of a scries of parallel wires in one plane and at cqual
intervals, the diameter of the wires being small compared with the
distance between them, while the nearest, portions of the electrified
bodies on the one side and of the protected conductor on the other
are at distances from the plane of the sereen, which are considerable
compared with the distance between consceutive wires.

R04.7 The potential at a distance »* from the axis of a straight
wire of infinite length charged with a quantity of clectricity A per
unit of length is Fe—2\log ¥ +C, (1)

We may express this in terms of polar coordinates referred to an
axis whose distance from the wire is unity, in which case we must

make =149, cos 0+ r2, (2
and if we suppose that the axis of reference is also charged with
the linear density A’, we find
V:—)\Iog-(l-—2;'C()s()+7-2)—2}\’10g r+-C. (3)
If we now make

2 27
r=¢ a, 6= =", (4)
a
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then, by the theory of conjugate functions,
2ny dry 2wy

¥ =—xlog 1—2(:“005% +e“) 2MNloge * +C,  (5)

where # and y are rectangular coordinates, will be the value of the
potential duc to an infinite series of fine wires parallel to z in the
plane of 2z, and passing through points in the axis of z for which
z is a multiple of a.

Each of these wires is charged with a linear density A.

The term involving A" indicates an electrification, producing a

/

, 47N, . .
constant foree — —7;—- in the direction of .

The forms of the equipotential surfaces and lines of force when
A= 0 are given in Fig. XIII. The equipotential surfaces near the
wires are nearly cylinders, so that we may consider the solution
approximately true, even when the wires are cylinders of a dia-
meter which is finite but small compared with the distance between
them.

The equipotential surfaces at a distance from the wires become
more and more nearly planes parallel to that of the grating.

If in the equation we make y = é;, a quantity large compared
with e, we find approximately,

I’1=———}—1:—b()\+)\)+0ne'1rly (6)

If we next make y = —4¢, where 4, is a negative quantity large
compared with ¢, we find approximately,

Ty — 4—7" b (A=X’) + C nearly. ()

If ¢ is the radius of the wires of the grating, ¢ being small
compared with «, we may find the potential of the grating itself
by sapposing that the surface of the wire coincides with the equi-
potential surface which cuts the planc of y2 at a distance ¢ from the
axis of 2. To find the potential of the grating we therefore put
z = ¢, and y = 0, whence

F=—2A\ log 2 sin * + C. (8)

205.] We have now obtained expressions representing the elce-
trical state of a system consisting of a grating of wires whose
diameter is small compared with the distance hetween them, and
two plane conducting surfaces, one on cach side of the grating,
and at distances which are great compared with the distance
between the wires.
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The surface-density o, on the first plane is got from the cqua-

tion (6) ar, 15
‘4 7 = e TS e— —— -\ . 9
{7 7 ~ (A+X) (9)
That on the second plane 7, from the equation (7)
dar, 17
Imoy=——% =~ T (\=)). 10
1 T Oy (/02 P (\ A ) ( )
If we now write a .o
a=—-2ﬂlo,f_,ra(2mn n)’ (11)

and eliminate A and A’ from the equations (6), (7), (8), (9), (10),
we find

20,0 . by .. .20
dmay (h+b, + =% =11(1+zi~)_12_7/;’—2, (12)

20,4, . 6 .24
477(1._,(7)1+62+-'-%—3’)=—7’1+V2(1 -gza')—f?;il. (13)

When the wires are infinitely thin, « becomes infinite, and the
terms in which it is the denominator disappear, so that the ease
is reduced to that of two parallel planes without a grating in-
terposed.

If the grating is in metallic communication with one of the
planes, say the first, F'= 7,, and the right-hand side of the equation
for o) becomes 7, — F,, Hence the density o induced on the first
planc when the grating is interposed is to that which would have
been induced on it if the grating were removed, the second plane

. o . 20
being maintained at the same potential, as 1 to 1 4 5@172) .

We should have found the same value for the cffect of the grating
in diminishing the electrical influence of the first surface on the
second, if we had supposed the grating connected with the second
surface. This is evident since 4, and 4, enter into the expression
in the same way. It is also a direet result of the thcorem of
Art, 88,

The induction of the one clectrified plane on the other through
the grating is the same as if the grating were removed, and the
distance between the planes increased from b, 44, to

b, 0,
bi+b,+2° o

If the two planes are kept at potential zero, and {he grating
clectrified to a given potential, the quantity of electricity on the
grating will be to that which would be induced on a plane of equal
area placed in the same position as

20,0, ist0 24, by4-a (h,+8,).

e &
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This investigation is approximate only when &, and 2, arc large
compared with «, and when « is large compared with ¢. The
quantity e is a line which may be of any magnitude, It becomes
infinite when ¢ is indefinitely diminished.

If we suppose ¢ = 4a there will be no apertures between the
wires of the grating, and therefore there will be no induction
through it.  We ought therefore to have for this case a = 0. The
formula (11), however, gives in this case

a
Q= — é-;r log‘OZ, =—0.11a,

which is evidently erroncous, as the induction ean never be altered
in sign by means of the grating. It is casy, however, to procecd
to a higher degree of approximation in the case of a grating of
cylindrical wircs. T shall merely indicate the steps of this process.

AMethod of Approximation,

206.7 Since the wires arc cylindrical, and since the distribution
of electricity on each is symmetrical with respect to the diameter
parallel to y, the proper expansion of the potential is of the form

I'= C,log r+3= C,7%cos 0, (14)
where r is the distance from the axis of one of the wires, and 0 the
angle between 7 and g, and, since the wire is a conductor, when
r is made equal to the radius 77 must be constant, and therefore
the coeflicient of each of the multiple cosines of 6 must vanish.

For the sake of conciseness let us assume new coordinates ¢, n, &e.
such that

af=27ma, an=27y, ap=27r, af =2x6, &. (15)

and let Iy = log (7B e~ 1*A 2 cos §). (16)

Then if we make
S NI 17
V= A, 1"+ 4, s + 4, ppe: + &ec. 1)
by giving proper values to the cocfficients 4 we may express any
potential which is a function of 3 and cos ¢, and does not become
infinite exeept when 48 = 0 and cos § = 1.
When 8 = 0 the expansion of 7 in terms of p and 0 is
7, = 2log p+ & p* c08 2 0— 1 p* cos 40+ &e. (18)
For finite values of B the expansion of /' is

1 )4 2 s cos 204 &e. (19
Fp=B+2log(1—¢ )+T_:é-_—5pcos —mp cos 20+ &ec. (19)
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In the case of the grating with two conducting planes whoge
equations are 5 = —Brand y= g, that of the plane of the grating
being 5 = 0, there will pe two infinite series of images of the
grating. The first series will consist of the grating itselr together
with an infinite serjes of images on hot}, sides, equal and similarly
electrified. The axes of these Imaginary cylinders lie ipn planes
whose equations are of the form

1=t 20(8,+p) (20)
2 being an integer.

The second serjes will consist of an infinite sericg of Images for
which the coeflicients 4y, 4,, 4,, &e. are cqual and oppasite to the
same quantities in the grating itself, while 4,, 4,, &c. are equal
and of the same sign. The axes of these Images are in planes whose
equations are of the form

) . N=28,+2nm (B + B.), (21)
m being an Integer.,

The potential due to any finite series of gyeh Images will depend
on whether the numbey of images is odd o even.  IHence the
potential due to an infinit, scries is indeterminate, but if we add to
it the function B+ G, the conditions of the problem wil] be sufficient
to determine the clectrical distribution,

We may first determine 7y and 7, the Potentials of the two
condueting planes, in termg of the coefficients 4y, 4y, &e., and of
Band €. We must then determine oy and o, the surface-density
at any point of thege Planes. The mean values of o, and 7, are
given by the equations

17a, = d,~ B, imo, = 4,4+ B, (22)

We must then expand the potentials due to the grating itsclf
and to all the images in termg of p and cosines of multiples of g,
adding to the result Bpeosot

The terms independent, of ¢ then give F~ the Potential of the .'7
grating, and the coefficient of the cosine of each multiple of g
cquated to zero gives ap equation between the indeterminate co-
eflicients,

In this WVay as many equations may be found as are sufficient,
to climinate all thege coefficients and to leave two cquations to
determine o, and @3 In terms of ", ¥,, and 7, 7

These equations will be of the form

N~V = 7oy (b +a—y)+4 7o, (a+ty),
VoV = 1701(@4y) +47m0, (b4 amy), (23)

.+ oesin




206.] METHOD OF APPROXIMATION. 253

The quantity of electricity induced on one of the planes protected
by the grating, the other plane being at a given difference of
potential, will be the same as if the plates had been at a distance

(a—y) (Z)] + 02) +ﬁl 32“4 ay instead of 61 +])2'

a4ty
The values of a and y are approximately as follows,
_a { 1 a 5 nict
= om U8 570 T3 T5ai gt

biths

+2¢ @ (1+6‘

by

nb—l -4 -< . '
“te “+&c.)+&0-g’ (24)

37ac? e_“%l e—h%

Tac

y=3a2+17202 i by +&e. (25)
1

~4




CHAPTER XIIL
ELECTROSTATIC INSTRUMENTS,

On Flectrostatic Instruments.

TuE instruments which we have to consider at present may be
divided into the following classes :

(1) Electrical machines for the production and augmentation of
clectrification,

(2) Multipliers, for inereasing clectrification in a known ratio,

(3) Electrometers, for the measurement of eleetrie potentinls and
charges,

(1) Accumulators, for holding large cleetrical charges,

Llectrical Machines.

207.] TIn the common electrical machine a.plate or eylinder of
glass is made to revolve so ay 4o rub against a surface of leather,
on which is spread an amalgam of zine and mereury,  The surface
of the glass becomes clectrified positively and that of the rubber
negatively.  As the electrified surface of the glass moves away
from the negative electrification of the rubber it acquires a high
positive potential. Tt then comes opposite to u set of sharp metal
points in connexion with the conductor of the machine. The posi-
five clectrification of the glass induees o negative electrification
of the points, which is the more intense the sharper the points
and the nearer they are to the glass,

When the machine works properly there is a discharge through
the air between the glass and the points, {lie glass loses part of
its positive charge, which is transferred to the points and so to
the insulated prime conductor of the machine, and to any other
body with which it is in electrie communication.

The portion of the glass which is advaneing towards the rubber
has thus a smaller positive charge than that which is leaving it
at the same time, so that the rubber, and the conductors in com-
munication with it, become negatively clectrified,
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The highly positive surface of the glass where it leaves the
rubber is more attracted Ly the negative charge of the rubber than
the partially discharged surface which is advancing towards the
rubber. The electrical forces therefore act as g resistance to the foree
employed in turning the machine. The work done in turning the
machine is therefore greater than that spent in overcoming ordinary
friction and other resistances, and the cxeess is employed in pro-
ducing a state of eleetrification whose energy s equivalent to this
excess.

The work done in overcoming friction is at once converted into
heat in the bodies rubbed together.  The electrical energy may
be also converted either into mechanical energy or into heat,

If the machine does not store up mechanieal cnergy, all the
energy will be converted into heat, and the only difference between
the heat due to friction and that due to eleetrical action is that the
former is generated at the rubbing surfices while the latter may be
generated in conductors at a distance *.

We have seen that the clectrical charge on the surface of the
glass is attracted by the rubber. If this attraction were sufficiently
intense there would be a discharge Letween the glass and the
rubber, instead of between the glass and the collecting points.  To
prevent this, flaps of silk are attached to the rubber, These become
negatively electrified and adhere to the glass, and so diminish the
potential near the rubber,

The potential therefore inercases more gradually as the glass
moves away from the rubber, and therefore ut any one point there
is less attraction of the charge on the glass towards the rubber, and
consequently less danger of direct discharge to the rubber,

In some eleetrical machines the moving part is of ehonite instead
of glass, and the rubbers of wool or fur. The rubber i then clece-
trified positively and the prime conductor negatively.

The Eleetroplorns of Folta,

R08.] The clectrophorus consists of a plate of resin or of chonite
backed with metal, and a plate of metal of the same size. An
insulating handle can he screwed to the hack of cither of these
plates.  The chonite plate has a metal pin which connects the metal

* Itis probable that in many cases wlere dynamical energy is converted into heat
by friction, part of the cnergy may be first transformed into electrical cnergy and
then converted into heat as the clectrical energy is spent in maintaining currenty of

short circuit close to the rubbing surfaces. See Sir W. Thomson, *On the Eleetro-
dynamic Qualitics of Metals.'  £hil. Trans., 1856, p.65u.
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plate with the metal back of the ebonite plate when the two plates
are in contact,

The ebonite plate is eclectrified negatively by rubbing it with
wool or cat’s skin. The metal plate is then brought near the
cbonite by means of the insulating handle. No direct discharge
passes between the ebonite and the metal plate, but the potential
of the metal plate is rendered negative by induction, so that when
1t comes within a certain distance of the metal pin a spark passes,
and if the metal plate be now carried to a distance it is found
to have a positive charge which may be communicated to a con-
ductor. The metal at the back of the ehonite plate is found to
have a negative charge equal and opposite to the charge of the metal
plate.

In using the instrument to charge a condenser or accumulator
one of the plates is laid on a conductor in communication with
the eurth, and the other is first laid on it, then removed and applied
to the electrode of the condenser, then laid on the fixed plate and
the process repeated. Tf the chonite plate is fixed the condenser will
be charged bositively. If the metal plate is fixed the condenser will
be charged negatively,

The work done by the hand in separating the plates is always
greater than the work done by the electrical attraction during the
approach of the plates, so that the operation of charging the con-
denser involves the expenditure of work. Part of this work js
accounted for by the energy of the charged condenser, part is spent,
in producing the noise and heat of the sparks, and the rest in
overcoming other resistances to the motion,

On Mackines producing Llectrification by Mechanical Work.

R09.] In the ordinary frictional electrical machine the work done
In overcoming friction is far greater than that done in increasing
the electrification. Hence any arrangement by which the elee-
trification may be produced entirely by mechanieal work against
the eleetrical forces is of scientific importance i’ not of practical
value. The first machine of this kind scems to have been Nicholson’s
Revolving Doubler, deseribed in the Philosophical Transactions for
1788 as ‘an instrument which by the turning of & Winch produces
the two states of Electricity without friction or communieation with
the Earth.’

210.] It was by means of the revolving doubler that Volta
succeeded in developing from the electrification of the pile an
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electrification capable of affecting his electrometer.  Instruments
on the same principle have been invented independently by Mr.
C. I, Varley *, and Sir W. Thomson.

These instruments consist essentially of insulated conductors of
various forms, some fixed and others moveable., The moveable
conductors are called Carriers, and the fixed ones may be called
Inductors, Receivers, and Regenerators. The inductors and receivers
are so formed that when the carriers arrive at certain points in
their revolution they are almost completely surrounded by a con-
ducting body. As the inductors and receivers cannot completely
surround the earrier and at the same time allow it to move frecly
in and out without a complicated arrangement of moveable picces,
the instrument is not theoretically perfect without a pair of re-
generators, which store up the small amount of electricity which
the carriers retain when they emerge from the receivers,

For the present, however, we may suppose the inductors and
reecivers to surround the carrier completely when it is within them,
in which case the theory is much simplified,

We shall suppose the machine to consist of two inductors A and
C, and of two receivers B and Z), with two carriers F and G.

Suppose the inductor £ to be positively electrified so that its
potential is 4, and that the carrier £'is within it and is at potential
£ Then, if Q is the coclicient of induction (taken positive) hetween
< and £} the quantity of eleetricity on the earrier will be Q (#'— ).

If the carrier, while within the inductor, is put in connexion with
the carth, then /= 0, and the charge on the carrier will be — Q.,
a negative quantity, Let the carrier be carried round till it is
within the receiver 5, and let it then come in contact with a spring
so as {o be in cleetrical connexion with B, It will then, as was
shewn in Art. 32, become completely discharged, and will com-
municate ils whole negative charge to the receiver 7.

The carrier will next enter the inductor € which we shall suppose
charged negatively.  While within €' it is put in connexion with
the earth and thus acquires a positive charge, which it carries off
and communicates to the receiver 2, and so on.

In this way, if the potentials of the inductors remain always
constant, the receivers B and /) receive successive charges, which
are the same for every revolution of the carrier, and thus cvery
revolution produces an equal increment of eclectricity in the re-
ceivers.

* Specifieation of Patent, Jan. 27, 1860, Nu. 206.

VOL. I. 5
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But by putting the inductor 4 in communication with the re-
ceiver 7, and the inductor € with the receiver B, the potentials
of the inductors will he continually increased, and the quantity
of electricity communicated to the receivers in each revolution will
continually increase.

For instance, let the potential of A4 and O he U, and that of B
and €, F, and when the carrier is within 4 let the charge on 4
and C be 2, and that on the carrier z, then, since the potential
of the carrier is zero, being in contact with carth, its charge is
2= —QU. The carrier enters B witl, this charge and communicates
1t to B, 1f the capacity of B and € is A, their potential will he

changed from 7 to l'—% U.

If the other carrier has at the same time carried a charge —QF
from € to D), it will change the potential of 4 and O from U to

’

U— /Qj Ty if @ is the coeflicient of induction between the carrier

and C, and A the capacity of A and ). 1If, therefore, &/, and v,
be the potentials of the two inductors after 2 half revolutions, and
U, and Iwsy after w41 half revolutions,

Uiy = U, — &

nt+1] — /l "
R j? U,.

/

If we write 22 = ¢ and 4? = —Q-: we find
V] * A

]7Un+1+7}rn+1 = (]7Uu+{]rn)(1 — ) = (/)['/o+f1:)) (1 —])9)"+]’

]’[/’rn+1—gl1x+l = (Z)Uu_'ﬂll—u)(] + ) = (})Uu—gro) ¢ +pg"r.

Hence

Vo= U=+ (1 4 pgy) + ](f o (L =pg)"~(1 + pgym,

T, =f B (=) —(1 4 pg") + 7 (L= py)m 4 (1 +29)").

It appears from these equations that the quantity »7/4 g7 con-
tinually diminishes, so that, whatever be the initia] state of clec-
trifieation the recejvers are ultimately oppositely electrified, so that,
the potentials of 4 and B are in the ratio of » to ~q.

On the other hand, the quantity ])U—/jl"continually increases,
8o that, however little 27U may exceed or fall short of gV at first,
the difference will be increased in a geometrical ratio in each
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revolution till the electromotive forces hecome so great that the
msulation of the apparatus is overcome.

Instruments of this kind may be used for various purposes.

For producing a copious supply of clectricity at a high potential,
as is done by means of Mr. Varley’s large machine.

For adjusting the charge of a condenser, as in the case of
Thomson’s electrometer, the charge of which ean be inereased or
diminished by a few turns of a very small machine of this kind,
which is then called a Replenisher.

For multiplying small differences of potentinl. The inductors
may be charged at first to an exceedingly small potential, as, for
instance, that due to a thermo-electric pair, then, by turning the
machine, the difference of potentials may be continually multiplied
till it becomes capable of measurement by an ordinary electrometer.
By determining by experiment the ratio of increase of this difference
due to cach turn of the machine, the original clectromotive force
with which the inductors were charged may be deduced from the
number of turns and the final eleetrification.

In most of these instruments the carriers are made to revolve
about an axis and to come into the proper positions with respect
to the inductors by turning an axle. The connexions are made hy
means of springs so placed that the carriers come in contact with
them at the proper instants.

?1L] Sir W. Thomson*, however, has constructed g machine for
multiplying electrical charges in which the carriers are drops of
water falling out of the inside of an inductor into an insulated
receiver. The receiver is thus continually supplied with electricity
of opposite sign to that of the inductor. If the inductor is clectrified
positively, the reeciver will receive a continually increasing charge
of negative electricity.

The water is made to escape from the receiver by means of a
funnel, the nozzle of which is almost surrounded by the metal of
the receiver. The drops falling from this nozzle are thercfore
nearly free from clectrification.  Another inductor and receiver of
the same construction are arranged g0 that the inductor of the
one system is in connexion with the receiver of the other. The
rate of inerease of charge of the reccivers is thus no longer constant,
but increases in u geometrical progression with the time, the
charges of the two receivers being of opposite signs.  This increase
goes on till the falling drops are so diverted from their course by

* Proc. R. S., June 20, 1867,
S 2
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the clectrical action that they fall outside of the receiver or even
strike the inductor.

In this instrument the energy of the electrification is drawn
from that of the falling drops,

R12.] Several other electrical machines have heen constructed
in which the principle of clectric induction is employed. Of these
the most remarkable is that of Holtz, in which the carrier is o glass
plate varnished with gum-lic and the inductors gre picces of
pasteboard.  Sparks are prevented from Passing between the parts
of the apparatus by means of two glass plates, one on each side
of the revolving carrier plate.  This machine is found to be very
effective, and not to be much affected by the state of the atmo-
sphere.  The prineiple is the same as in the revolving doubler and
the instruments developed out of the same idea, but as the carrier
Is an insulating plate and the inductors are imperfect conductors,
the complete explanation of {he action is more difficult than in
the case where the carriers ave good conductors of known form
and are charged and discharged at definite points.

213.] In the electrical machines already descriled sparks occur

whenever the carrier comes in

L Tt

BT . contact with a conductor at 2
ya ;:3—‘:‘\:‘\ AN different  potential  from its

o 7 K \ own,
A/ ‘ Now we have shewn that

whenever this oceurs there js
a loss of energy, and therefore
the whole work employed in
turning the machine is not con-
verted into electrification in an

N fn'zulublc ¥ox'm, but part is spent
Fig.17 n producing the heat and nojse

of clectric sparks,

I have therefore thought it desirable to shew how an eleetrical
machine may be constructed which is not subject to this loss of
efficiency. I do not propose it as a useful form of machine, but
as an example of the method by which the contrivance called in
heat-engines a regenerator may be applied to an electrical machine
to prevent loss of work,

In the figure let A By ¢ oA, B, represent hollow fixed
conductors, so arranged that the carrier P passes in suceession
within each of them.  Of these 4, A" and B, B nearl Y surround the
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carrier when it is at the middle point of its passage, but C, C’ do not
cover it so much.

We shall suppose 4, B, C to be connected with a Leyden jar
o great capacity at potential 7, and A, %', ¢’ to he connceted with
another jar at potential — 77,

P is one of the carriers moving in a circle from A to C, &c.,
and touching in its course certain springs, of which @ and o are
connected with A and A4 respectively, and ¢, ¢ are connected with
the earth,

Let us suppose that when the carrier P is in the middle of A
the coeflicient of induction letween P and A is — 4, The capacity
of P in this position is greater than 4, since it is not completely
surrounded by the receiver 4. Tiet it be A + a.

Then if the potential of P is U, and that of 4, 7, the charge
on P will be (A +a)li— AT,

Now let P be in contact with the spring @ when in the middle
of the receiver 4, then the potential of P is /) the same as that
of A, and its charge is therefore a I,

If P now leaves the spring @ it carries with it the charge al’,
As P leaves A its potential diminishes, and it diminishes still more
when it comes within the influence of ¢, which is negatively
electrified.

If when P comes within C its coeficient of induction on € is
—C’, and its capacity is C” +-¢’, then, if U/ is the potential of P
the charge on P is

(C+ V4T = al,

It 'V =aP,
then at this point I the potential of 2 will be reduced to zero.

Let P at this point come in contact with the spring ¢” which is
connected with the carth.  Sinee the potential of P is equal to that
of the spring there will be no spark at contact.

This conductor £, by which the earrier is cnabled to be conneeted
to carth without a spark, answers to the contrivance called a
regenerator in heat-engines.  We shall therefore call it a Re-
generator,

Now let 7 move on, still in contaet with the earth-spring ¢’, till
it comes into the middle of the inductor 7, the potential of which
is I I{ —B is the coeflicient of induction between 2 and B at,
this point, then, since U/ = 0 the charge on P will he — BV

When 2 moves away from the earth-spring it carries this charge
with it.  As it moves out of the positive inductor B towards the
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negative receiver 4’ its potential will be increasingly negative, At
the middle of £, if it retained its charge, its potential would be
AT+ BV
T A

and if B7"is greater than o/} jts numerical value will he greater
than that of 77, Ience there 15 some point before P reaches the
middle of' 4" where its potential is —. I'7. At this point let it come
in contact with the negative receiver-spring «”.  I'heye will be no
spark since the two hodies are at the same potential.  T,et 2L move
on to the middle of ', still in contact witl the spring, and therefore
at the same potential with _s, During this motion it communicates
a negative charge to /. At the middle of 4” it leaves the spring
and carries away a charge —a'7” towards the positive regenerator
C, where its potentinl is reduced to zero and it touches the earth-
spring ¢. It then slides along the earth-spring into the negative
induetor 7, during which motion it acquires a positive charge 117
which it finally communicates to the positive receiver 4, and the
eycle of operations is repeated,

During this eyele the positive receiver has lost a charge 7" and
gained a charge '/, Hence the total gain of positive clectricity
is LI —al,

Similarly the total gain of negative clectricity is BlI'—d'},

By making the inductors so gs to be as close to the surface of
the carrier as is consistent, with insulation, 2 and 2 may be made
large, and by making the reccivers 80 as nearly to surround the
carvier when it is within them, ¢ and « may be made very small,
and then the charges of hoth the Leyden jars will he increased in
every revolution,

The conditions to be fulfilled by the regencrators are

CFV=al, and V= aF .

Since @ and « are small the regenerators do not require to he

cither large or very close to the carriers.

On Electrometers and Flectroscopes,

214] An clectrometer is an instrument by means of which
cleetrical charges or electrieal botentials may he measured. In-
struments by means of which the existence of electric charges or
of differeness of potential may he indicated, but which are not
capable of affording numerical measures, are called Eleetroseopes.

An clectroscope if sufliciently sensible may be used in eleetrical
measurements, provided we can make the measurement depend on

ntno it ey o
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the absence of clectrification. For instance, if we have two charged
bodies 4 and & we may use the method deseribed in Chapter I to
determine which body has the greater charge. Let the body A
be earried by an insulating support into the interior of an insulated
closed vessel €. Let € be conneeted to carth and again insulated.
There will then be no external electrification on €. Now let 4
be removed, and 2 introduced into the interior of C, and the elec-
trifieation of C tested by an electroscope. If the charge of B is
equal to that of A there will be no electrification, but if it is greater
or less there will be electrification of the same kind as that of B, or
the opposite kind.

Methods of this kind, in which the thing to be observed is the
non-existence of some phenomenon, are called nu/Z or zera methods.
They require only an instrument capable of detecting the existence
of the phenomenon,

In another class of instruments for the registration of phe-
nomena the instrument may be depended upon to give always the
same indication for the same value of the quantity to be registered,
but the readings of the scale of the instrument are not proportional
to the values of the quantity, and the relation hetween these
readings and the corresponding value is unknown, except that the
one is some continuous function of the other. Several electrometers
depending on the mutual repulsion of parts of the instrument
which are similarly eleetrified are of this class. The use of such
instruments is to register phenomena, not to measure them. Instead
of the true values of the quantity to be measured, a series of
numbers is obhtained, which may be used afterwards to determine
these values when the scale of the instrument has been properly
investigated and tabulated.

In a still higher class of instruments the scale readings are
proportional to the quantity to be measured, so that all that is
required for the complete measurement of the quantity is a know-
ledge of the coefficient by which the scale readings must be
multiplied to obtain the true value of the quantity.

Instruments so construeted that they contain within themselves
the means of independently determining the true values of quan-
tities arc called Absolute Instruments.

Conlomt’s Torsion Bulunce.

215.] A great number of the experiments by which Coulomb
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established the fundamenta] laws of electricity were made by mea-
suring the force between two small spheres charged with electricity,
one of which was fixed whije the other was held in equilibrium 1y
two forees, the eleetrical action between the spheres, and  tle
torsional clasticity of a glass fibre or metal wire. Sce Art. 38.

The balance of torsion eonsists of o horizontal arm of gum-lac,
suspended by a fine wire or glass fibre, and carrying at one end 3
little sphere of clder Pith, smoothly pilt. The suspension wire ig
fastened above to the vert ical axis of an arm which ean he moved
round a horizontal graduated circle, so as to twist the upper end
of the wire about its own axis any number of degrees,

The whole of this apparatus is enclosed in 4 ense, Another little
sphere is so mounted on ap insulating stem that it can be charged
and introduced into the case through a hole, and brought so that
its centre coincides with a definite point in the horizontal eircle
described by the suspended sphere, e position of the suspended
sphere is ascertained by means of a graduated cirele engraved on
the eylindrical glass case ol the instrument,

Now suppose hoth spheres charged, and the suspended sphere
in equilibrium in g known position such that the torsion-arm makes
an angle 0 with the radins through the centre of the fixed sphere,
The distance of the centres is then 24 gin 10, where o is the radiug
of the tox'sion-grm, and if /'is the foree between the spheres the
moment of this force about, {he axis of torsion is Jq cos § 0.

Let both spheres be completely discharged, and ot the torsion-
am now be in equilibrinm at an angle ¢ with the radjus through
the fixed sphere,

Then the angle through which the electrical force twisted the
torsion-arm must have been 0 — ¢, and if 37 i the moment of
the torsional elasticity of the fibre, we shall have the equation

Facosyo = Jr (@~ o).
Hence, if we can ascertain 1/, we ean determine 2 the actual
force between the spheres at the distance 24 sin 4 9,
To find A/, the moment of torsion, let 7 he the moment of inertia
of the torsion-arm, and 7 the time of a double vibration of the arm
under the action of the torsional elasticity, then

A = 5.': I

In all clectrometers it is of the greatest importanee to know
what force we are measuring.,  The foree acting on the suspended

e e s
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sphere is due partly to the direct action of the fixed sphere, but
partly also to the clectrification, if any, of the sides of the case.

If the case is made of glass it is impossible to determine the
clectrification of its surface otherwise than by very difficult mea-
surements at every point. If, however, cither the case is made
of metal, or if a metallic case which almost completely encloses the
apparatus is placed as a sereen hetween the spheres and the glass
case, the electrification of the inside of the metal sercen will depend
entirely on that of the spheres, and the electrification of the glass
case will have no influence on the spheres. In this way we may
avoid any indefiniteness due to the action of the case.

To illustrate this by an example in which we can enleulate all
the effects, let us suppose that the case is a sphere of radius 4,
that the centre of motion of the torsion-arm coincides with the
centre of the sphere and that its radius is @; that the charges on
the two spheres are 7, and Z,, and that the anglé between their
positions is ¢; that the fixed sphere is at a distance a, from the
centre, and that 7 is the distance hetween the two small spheres.

Neglecting for the present the effect of induction on the dis-
tribution of electricity on the small spheres, the force hetween

them will be a repulsion

o
P

and the moment of this force round a vertical axis through the
centre will be
B E aa; sin 6
7.11
The image of %, duc to the spherical surface of the case is a point

2

. . n®o, b

in the same radius at a distance p with acharge — 7, =) and the
1 a4

moment of the attraction between 7 and this image about the axis

of suspension is

o,
5 « ;:-— sin @

EEI - 21 4 1

4

b 5a3~2{(({-cos6+ q,—,?-'

{ a, a*y
) aa, sin 0 —
ad 9% g, “ONE

1/ 11 2 2 cos 0 + b

If 4, the radius of the spherical case, is large compared with «
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and «;, the distances of the spheres from the centre, we may neglect
the second and third tepms of the factor in the denominator. The
whole moment tending to turn the torsion-arm may then he writien

. 1 1
BB au sin0 { =l = (0= g).

]:’/c'/'/mmc/c/'.v, Jor the Measurement of" Potentials,

R16.7 In all clectrometery the moveable part is g body charged
with electricity, aud jts potential is different from that of certain
of the fixed parts round it. When, as in Coulomly’s method, an
insulated body having a certain charge is used, it is the charge
which is the direct object of measurement, W may, however,
conneel the balls of Couloml)’s electrometer, by means of fine wires,
with different conduetors, The charges of the halls will then
depend on the values of the potentials of these conductors and on
the potential of the case of the instrument, e charge on each
ball will e approximately equal to its radiys multiplied by the ‘
excess of its potential over that of the case of the instrument, ;
provided the radii of the balls are small compared with thejy
distances from cach other and from the sides or opening' of the
ase. |

Coulomb's form of apparatus, however, is not well adapted for

measurements of this kind, owing to the smallness of the force :
between spheres at the proper distances when {he difference of po- ;
tentials is small. A more convenient form is that of the Attracted
Disk Electrometer. The first clectrometers on this principle were ;
constructed by Sir W, Snow Hurris *, They have since Dbeen i

brought to great perfecetion, both in theory and construction, by
Sir \v, Thomson ¥,

When two disks at different potentials are brought tace to faee
with a small interval between them {here will be a nearly uniform
clectrification on the opposite faces and very little electrification
on the backs of the disks, provided there are no other conductors
or electrified bodies in the ncighbourhood, T, charge on the
bositive disk will be approximately proportional o its area, and to
the difference of potentials of the disks, and inversely as the distance
between them, Hence, by making the arcas of the disks large

* Pl Tyqns. 1834,

1 See an excellent report on Electromctery by Sir W. Thomson, Report of the
British 4 8socialion, Dundee, 1867,
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and the distance between them small, a small difference of potential
may give rise to a measurable force of attraction.

The mathematical theory of the distribution of electricity over
two disks thus arranged is given at Art. 202, but since it is im-
possible to make the case of the apparatus so large that we may
suppose the disks insulated in an infinite space, the indications of
the instrument in this form are not casily interpreted numerically.

R17.] The addition of the guard-ring to the attracted disk is one
of the chief improvements which Sir W, Thomson has made on the
apparatus.

Instead of suspending the whole of one of the disks and determ-
ining the force acting upon it, a central portion of the disk is
separated from the rest to form the attracted disk, and the outer
ring forming the remainder of the disk is fixed. In this way the
force is measured only on that part of the disk where it is most
regular, and the want of uniformity of the electrification near the

COUNTERPOISE

Lo~s

( HAIR MOVING ovER
TWo BLACK

3 3

u Py

- 3

of |30

& olos

SLASS
X

2 LR

LT

2 1Y

G

z

Fig. 18.

edge is of no importance, as it occurs on the guard-ring and not
on the suspended part of the disk.

Besides this, hy connecting the guard-ring with a metal case
surrounding the back of the attracted disk and all its suspending
apparatus, the clectrification of the hack of the disk is rendered
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impossible, for it is part of the immer surface of a closed hollow
conductor all al the same potential.

Thomson’s Absolute Electrometer therefore consisis essentially
of two parallel plates at different potentials, one of which is made
so that a certain area, no part of which is near the edge of the
plate, is moveable under the action of clectric force. Mo fix our
ideas we may suppose the attracted disk and gnard-ring uppermost.
The fixed disk is horizontal, and is mounted on an insulating stem
which has a measurable vertical motion given to it by means of
a micrometer serew.  The gnard-ring is at least as large as the
fixed disk; its lower surface is truly planc and parallel to the fixed
disk. A delicate balance is ereeted on the guard-ring to which
is suspended a light moveable disk which almost fills the cireular
aperture in the guard-ring without rabbing against its sides. The
lower surface of the suspended disk must be truly plane, and we
must have the means of knowing when its plane coincides with that
of the lower surfuce of the gunard-ring, so as to form a single plane
interrupted only by the narrow interval between the disk and its
guard-ring.

For this purpose the lower disk is screwed up 1ill it is in contact.
with the guard-ring, and the suspended disk is allowed to rest
upon the lower disk, so that its lower surface is in the same plane
as that of the guard-ring. TIis position with respect to the guard-
ring is then ascertained by means of a system of fiducial marks,
Sir W. Thomson generally uses for this purpose a black hair
attached to the moveable part. This hair moves up or down just
i front of two black dots on a white enamelled ground and is
viewed along with these dots by means of a plano convex lens with
the plane side next the eye. 1If the hair as seen through the lens
appears straight and biseets the interval between the black dots
it is said to be in its sighted posilion, and indicates that the sus-
pended disk with which it moves is in its proper position as regards
height.  The horizontality of the suspended disk may be tested by
comparing the reflexion of part of any object from its upper surface
with that of the remainder of the same object from {he upper
surface of the guard-ring.

The balance is then arranged so that when a known weight is
Placed on the centre of the suspended disk it is in equilibrium
in its sighted position, the whole apparatus being freed from
clectrification by putting every part in metallic communication.
A metal case is placed over the guard-ring so as to enclose the

B it o 1
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balance and suspended disk, sufficient apertures being left to sce
the fiducial marks.

The guard-ring, case, and suspended disk are all in metallic
communication with each other, but are insulated from the other
parts of the apparatus.

Now let it be required to measure the difference of potentials
of two conductors.  The conductors are put in communication with
the upper and lower disks respectively by means of wires, the
weight is taken off the suspended disk, and the lower disk is
moved up by means of the micrometer screw till the electrieal
altraction brings the suspended disk down to its sighted position.
We then know that the abtraction between the disks is equal to
the weight which brought the disk to its sighted position.

If /7 be the numerical value of the weight, and g the foree of
gravity, the foree is #7g, and if .f is the arca of the suspended
disk, . the distanee between the disks, and 7™ the difference of the
potentials of the disks,

7=
Wy= 2o
Calry:
or /'=p 8mg IV
p

If the suspended disk is circular, of radius &, and if the radius of

the aperture of the guard-ring is /7, then
g

Ad =37 (R*+ 2% and /'=4.'/)/\/.,- S
b (R4 2%, an e

R18.] Since there is always some uncertainty in determining the
micrometer reading corresponding to 2= 0, and since any error

* Let us denote the radius of the suspended disk by £, and that of the aperture
of the guard-ring by 1V, then the breadth of the anuulur interval between the
disk and the ring will be B=p'— R,

If the distance between the suspended disk and the large fixed disk is D), and
the difference of potentinly between these disks is , then, by the investigation in
Art. 201, the quantity of clectricity on the suspended disk will be

Q=v {1f’+]|"'-' RI-I w }
8D T 8D Dl

]()Hﬂ 2 4 ’ ¥

where a=DB Ty or a=0.220635 (&'— I).

If the surface of the guard-ring is not exactly in the plane of the surface of
the suspended disk, let us suppose that the distance between the fixed disk and
the guard-ring is not D but D+z= /), then it appbars from the investigation in
Art. 225 that there will be an additional charge of electricity near the edge of
the disk on account of ity height z above the general surface of the guard-ring.
The whole charge in this case is therefore

G=V R4 R RA-R* o« R+ K 47 (R+ 1)

e T sw et o P D =

[
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in the position of the suspended disk is most important when 2
1s small, Sir W. Thomson prefers to make all his measurements
depend on differences of the electromotive foree 7 Thus, if /" and
77 are two potentials, and 2 and 2 the corresponding distances,

For instance, in order to measnre the clectromotive foree of a
galvanic battery, two electrometors are used,

By means of a condenser, kept charged if hecessary by a re-
Plenisher, the lower disk of the principal clectrometer i maintained
at a constant potential. This is tested by connecting the lower
disk of the principal clectrometer with the lower disk of o secondary
clectrometer, the suspended disk of which is connected with the
carth. The distance hetween the disks of the secondary elec-
trometer and the foree required to bring the suspended disk to
its sighted position being constant, if we raise the potential of the
condenser till the sccondary clectrometer is in jts sighted position,
we know that the potential of the lower disk of the prineipal
clectrometer exceeds that of the earth by a constant quantity which
we may call 7,

If we now eonnect the positive clectrode of the hattery to carth,
and connect {he suspended disk of the principal electrometer to the
negative clectrode, the difference of potentials between the disks
will be "4, if # is the electromotive foree of the battery, Let
D be the reading of the micrometer in this case, and let 7 be the
reading when the suspended disk is connected with, earth, then

v= (V1) ,\/f"_yili
Py

In this way a small clectromotive foree may be measured
by the electrometer with the disks at conveniently measurahle
distances. When {he distance is too small o small change of
absolute distance makes g great change in the force, since the

and in the expression for the attraction we mugt substitute for A4, the area of the
disk, the corrected quantity

) ,
A=fn{ Bv 1o (g oy i 2t 8RB (1= Dylog, TR I
i )

where R = radiug of suspended digk,
= radiug of nperture in the guard-ring,
D = distance between fixed and suspended disks,
"= distance between fixed disk and guard-ring,
a = 0.220635 (8 1),
When « is sl compared with 1) we may neglect the second term, and when
L'~ D is small we may neglect the Inst tenn,
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foree varies inversely as the square of the distance, so that any
error in the absolute distance introduces a large error in the result
unless the distance is large compared with the limits of crror of
the micrometer screw.

The effect of small irregularities of form in the surfaces of the
disks and of the interval hetween them diminish according to the
inverse cube and higher inverse powers of the distance, and what-
ever be the form of a corrugated surface, the eminences of which
Just reach a plane surface, the electrical effect at any distance
which is considerable compared to the breadth of the corrugations,
is the same as that of o plane at a certain small distanee behind
the plane of the tops of the eminences. See Arts. 197, 198.

By means of the auxiliary electrification, tested by the auxiliary
clectrometer, a proper interval hetween the disks is secured.

The auxiliary electrometer may be of a simpler construction, in
which there is no provision for the determination of the foree
of attraction in ubsolute measure, since all that is wanted is to
secure a constant cleetrification.  Such an electrometer may he
called a gauge clectrometer.

This method of using an auxiliary clectrification besides the elee-
trification to be measured is called the IHeterostatic method of
electrometry, in opposition to the Idiostatic method in which the
whole effeet is produced by the electrification to he measured.

In several forms of the attracted disk clectrometer, the attracted
disk is placed at one end of an arm which is supported by being
attached to a platinum wire passing through its centre of gravity
and kept stretched by means of a spring.  The other end of the
arm carries the hair which is brought to a sighted position by
altering the distance between the disks, and so adjusting the force
of the electric attraction to a constant value. In these electro-
meters this foree is not in general determined in absolute measure,
but is known to he constant, provided the torsional elasticity of
the platinum wire does not change.

The whole apparatus is placed in a Leyden jar, of which the inner
surface is charged and connected with the attracted disk and
guard-ring.  The other disk is worked by a micrometer serew and
is connected first with the carth and then with the conductor whese
potential is to be measured. The difference of readings multiplied
by a constant to he determined for each electrometer gives the
potential required.

219.] The electrometers alrcady deseribed are not self-acting,
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but require for cach ohservation an adjustment of a micrometer
screw, or some other movement which must be made by the
obscrver,  They are therefore not fitted to act as self-registering in-
struments, which must of themselves move into the proper position,
This condition is fulfilled by Thomson’s Quadrant Electrometer.

The electrical principle on which this instrament is founded may
be thus explained :—

A and 2 are two fixed conductors which may be at the same
or at different potentials. C is a moveable conductor at a high
potential, which is so placed that part of it is opposite to the
surface of 4 and part opposite to that of B, and that the proportions
of these parts are altered as € moves.

For this purpose it is most convenient to make € moveable about
an axis, and make the opposed surfaces of A, of B, and of C portions
of surfaces of revolution about the same axis.

In this way the distance between the surface of € and the
opposed surfaces of A or of I3 remains always the same, and the
motion of € in the positive direction simply increases the area
opposed to 3 and diminishes the area opposed to A,

If the potentials of A4 and B are equal there will be no foree
urging € from A to B, but if the potential of €' differs from that
of B more than from that of A, then € will tend to move so as
to increase the arca of its surface opposed to A,

By a suitable arrangement of the apparatus this foree may be
made nearly constant for different positions of ¢ within certain
limits, so that if €' is suspended by a torsion fibre, its deflexions
will be nearly proportional to the difference of potentials hetween
A4 and B multiplied by the difference of the potential of € from
the mean of those of /A and 5.

C is maintained at a high potential by means of & condenser
provided with a replenisher and tested by a gauge clectrometer,
and A and B are connected with the two conductors the difference
of whose potentials is to be measured. The higher the potential

of € the more sensitive is the instrument. This electrification of

C, being independent of the clectrification to be measured, places
this electrometer in the heterostatic class.

We may apply to this clectrometer the general theory of systems
of conductors given in Arts. 93, 127.

Let s, B, C denote the potentials of the three conduetors re-
spectively. Let @, b, ¢ be their respective capaeities, » the coefficient
of induction hetween B and €, ¢ that between € and 4, and 7 that
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between 4 and B. All these coefficients will in general vary with
the position of €, and if C is so arranged that the extremitics of 4
and B are not near those of ¢ as long as the motion of € is confined
within certain limits, we may asecrtain the form of these coefficients.
If 0 represents the deflexion of ¢’ from A towards B, then the part
of the surface of 4 opposed to C will diminish as 6 increnses.
Hence if 1 is kept at potential 1 while 8 and C are kept at potential
0, the charge on 4 will be @ = a,—a#8, where @, and a are
constants, and ¢ is the capacity of .

If 4 and B are symmetrical, the capacity of B is & = by4a 0.

The capacity of € is not altered by the motion, for the only
effect of the motion is to bring a different part of € opposite to the
interval between 4 and B, Hence ¢ = ¢,

The quantity of electricity induced on € when B is raised to
potential unity is p = p,—ad.

The coeflicient of induction hetween £ and C is g = ¢, + a6.

The coeflicient of induction hetween 4 and B is not altered by
the motion of ¢, but remains » = 7,.

Henee the clectrical energy of the system is

Q =3 Aa+§ B4 4C% + BCp + Cdg+ ABr,

and if © is the moment of the force tending to inerease 6,

Q= %—;‘2— s 4,8, C being supposed constant,
. N/ ., de dp L d dr
=3 (7{5 T8, HiC 510+ Bc}z/é +04 Zz{{o +4B o0

=—3d%+ 3 B%a—DBCa+ Cda;
or O = (l(/l--.B) (C——ﬁ (A-l—])))).

In the present form of Thomson’s Quadrant Electrometer the
conductors . and B are in the form of
a cylindrical box completely divided
into four quadrants, separately insu-
lated, but joined by wires so that two
opposite quadrants are connected with
4 and the two others with B.

The conductor C is suspended so as
to be capable of turning about a
vertical axis, and may consist of two
opposite flat quadrantal ares supported
by their radii at their extremities.
In the position of equilibrium these quadrants should be partly

VOL. L. T

Fig. 19.
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within 4 and partly within B, and the supporting radii should
be near the middle of the quadrants of the hollow base, so that
the divisions of the hox and the extremitics and supports of C
may Dbe as far from each other as possible.

The conductor € is kept permanently at a high potential by
being connected with the inner coating of the Leyden jar which
forms the case of the instrument. 2B and A are connected, the first
with the earth, and the other with the body whose potential is to be
measured.,

If the potential of this body is zero, and if the instrument be
in adjustment, there ought to be no force tending to make € move,
but if the potential of A is of the same sign as that of C, then
C will tend to move from .f to B with a nearly uniform force, and
the suspension apparatus will be twisted till an equal force is
called into play and produces equilibrium,  For deflexions within
certain limits the deflexions of € will be proportional to the

product (d~B) (C—3} (4 +B)).

By increasing the potential of € the sensibility of the instrament
may be inereased, and for small values of 3 (d + D) the force will be
nearly proportional to (. -b)C.

O the Measurement of Electric Potential,

220.] In order to determine large differences of potential in ab-
solute measure we may cmploy the attracted disk electrometer, and
compare the attraction with the effect of a weight.  If at the same
time we measure the difference of potential of the same conductors
by means of the quadrant electrometer, we shall ascertain the
absolute value of certain readings of the scale of the quadrant
electrometer, and in this way we may deduce the value of the seale
readings of the quadrant electrometer in terms of the potential
of the suspended part, and the moment of torsion of the suspension
apparatus,

To ascertain the potential of a charged conductor of finite size
We may connect the conductor with one electrode of the electro-
meter, while the other is connceted to earth or to a body of
coustant potential, The electrometer reading will give the potential
of the conductor after the division of its electricity between it
and the part of the electrometer with which it is put in contact.
If K denote the capacity of the conductor, and K’ that of this part
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of the electrometer, and if 7, 7’ denote the potentials of these
bodies before making contact, then their common potential after
making contact will be
v _ KV + K7
T K+ K
Hence the original potential of the conductor was

v 72 K’ k74 rr
V=V -+ f(’ -7 ).

If the conductor is not large compared with the electrometer,
K’ will be comparable with £, and unless we can ascertain the
values of K and X’ the second term of the expression will have
a doubtful value. But if we can make the potential of the electrode
of the electrometer very nearly equal to that of the body before
making contact, then the uncertainty of the values of X and X
will be of little consequence.

If we know the value of the potential of the body approximately,
we may charge the electrode by means of a ‘replenisher’ or other-
wise to this approximate potential, and the next experiment will
give a closer approximation. In this way we may mecasure the
potential of a conductor whose ecapacity is small compared with
that of the electrometer.

To Measure the Potential at any Point in the dir,

R21.] First Method. Place a spherc, whose radius is small com-
pared with the distance of clectrified conductors, with its centre
at the given point, Conmect it by means of a fine wire with the
carth, then insulate it, and carry it to an electrometer and ascertain
the total charge on the sphere.

Then, if 7 be the potential at the given point, and a the
radius of the sphere, the charge on the sphere will be —Vu=@Q,
and if 7”7 be the potential of the sphere as measured by an elec-
trometer when placed in a room whose walls are connected with
the earth, then ”

Q = VLZ,

whence V47 =,

or the potential of the air at the point where the centre of the
sphere was placed is equal but of opposite sign to the potential of
the sphere after being connected to earth, then insulated, and
brought into a room.
This method has been employed by M. Delmann of Creuznach in
T2
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measuring the potential at a certain height above the earth’s
surface.

Second Method. We lave supposed the sphere placed at the
given point and first connected to carth, and then insulated, and
carried into a space surrounded with conducting matter at potential
zero.

Now let us suppose a fine insulated wire carried from the clee-
trode of the electrometer to the place where the potential is to
be measured.  Let the sphere be first discharged completely.  This
may be done by putting it into the inside of a vessel of the same
metal which nearly surrounds it and making it touch the vessel,
Now let the sphere thus discharged be carried to the end of the
wire and made to touch it. Since the sphere is not clectrified it
will be at the potential of the air at {he place. If the electrode
wire is at the same potential it will not be affected by the contact,
but if the electrode is at a different potential it will by contact
with the sphere be made nearer to that of the air than it was
before. By a succession of such operations, the sphere being
alternately discharged and made to tonch the electrode, the poten-
tial of the electrode of the electrometer will continually approach
that of the air at the given point.

222.] To measure the potential of a conductor without touching
it, we may measure the potential of the air at any point in the
neighbourhood of the conductor, and caleulate that of the conductor
from the result. If there be a hollow nearly surrounded by the
conductor, then the potential at any point of the air in this hollow
will be very nearly that of the condnctor,

In this way it has been ascertained by Sir W. Thomson that if
two hollow conductors, one of copper and the other of zine, are
in metallic contact, then the potential of the air in the hollow
surrounded by zine is positive with reference to that of the air
in the hollow surrounded by copper.

Third Method. 1If by any means we can cause a succession of
small bodies to detach themsclves from the end of the electrode,
the potential of the electrode will approximate to that of the sur-
rounding air. This may be done by causing shot, filings, sand, or
water to drop out of a funnel or pipe connected with the electrode.
The point at which the potential is measured is that at which
the stream ceases to be continuous and breaks into separate parts
or drops.

Another convenient method is to fasten a slow match to the
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electrode. The potential is very soon made equal to that of the
air at the burning end of the match. Iven a fine metallic point
is sufficient to create a discharge by means of the particles of the
alr when the difference of potentials is considerable, but if we
wish to reduce this difference to zero, we must use one of the
methods stated above,

If we only wish to ascertain the sign of the difference of the
yotentials at two places, and not its numerical value, we may cause
drops or filings to be discharged at one of the places from a nozzle
connccted with the other place, and ecatch the drops or filings
in an insulated vessel. Bach drop as it fulls is charged with a
certain amount of electricity, and it is completely discharged into
the vessel. The charge of the vessel therefore is continually ac-
cumulating, and after a sufficient number of drops have fallen, the
charge of the vessel may be tested by the roughest methods. The
sign of the charge is positive if the potential of the nozzle is positive
relatively to that of the surrounding air,

MEASUREMENT OF SURFACE-DENSITY OF ELECTRIFICATION,

Theory of the Proof Plane,

223.] In testing the results of the mathematical theory of the
distribution of elcctricity on the surface of conductors, it is necessary
to be able to measure the surface-density at different points of
the conductor. Tor this purpose Coulom), employed a small disk
of gilt paper fastened to an insulating stem of gum-lac. He ap-
plied this disk to various points of the conduetor by placing it
80 as to coincide as nearly as possible with the surface of the
conductor.  He then removed it by means of the insulating stem,
and measured the charge of the disk by means of his electrometer.

Since the surface of the disk, when applied to the conductor,
nearly coincided with that of the conductor, he concluded that
the surfuce-density on the outer surface of the disk was nearly
cqual to that on the surface of the conductor at that place, and that
the charge on the disk when removed was nearly equal to that
on an area of the surface of the conductor equal to that of one side
of the disk. This disk, when employed in this way, is called
Coulomb’s Proof Plane.

As objections have been raised to Coulomb’s use of the proof
plane, I shall make some remarks on the theory of the experiment.
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The experiment consists in bringing a small conducting hody
into contact with the surface of the conductor at the point where
the density is to be measured, and then removing the body and
determining its charge.

We have first to shew that the charge on the small body when
in contact with the conductor is proportional 1o the surface-
density which existed at the point of contact before the small body
was placed there.

We shall suppose that all the dimensions of the small hody, and
especially its dimension in the direction of the normal at the point
of contact, are small compared with either of the radii of curvature
of the conductor at the point of contact. Henee the variation of
the resultant force duc to the conductor supposed rigidly electrified
within the space occupied by the small hody may be neglected,
and we may treat the surface of the conductor near the small body
as a plane surface,

Now the charge which the small hody will take by contact with
a plane surface will be proportional to the resnltant foree normal
to the surface, that is, to the surface-density.  We shall ascertain
the amount of the charge for particular forms of the bod y.

We have next to shew that when the small body is removed no
spark will pass Letween it and the conductor, so that it will carry
its charge with it. This is evident, because when the bodies are
in contact their potentials are the same, and therefore the density
on the parts nearest 1o the point of contact is extremely small,
When the small body is removed to a very short distance from
the conductor, which we shall suppose to be clectrified positively,
then the clectrification at the point nearest to the small body is
no longer zero hut positive, but, since the charge of the small body
1s positive, the positive electrification close to the small body will
Lo less than at other neighbouring points of the surface. Now
the passage of a spark depends in general on the magnitude of the
resultant force, and this on the surface-density. Henee, since we
suppose that the conductor is not so highly electrified as to be
discharging electricity from the other parts of its surface, it will
not discharge a spark to the small body from a part of its surfuce
which we have shewn to have a smaller surface-density.

224.] We shall now consider various forms of the small hody.

Suppose it to be a small hemisphere applied to the conductor so
as to touch it at the centre of its flat side.

Let the conductor he a large sphere, and let us modify the form
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of the hemisphere so that its surface is a little more than a hemi-
sphere, and meets the surface of the sphere at right angles. Then
we have a case of which we have already obtained the exact solution,
See Art. 168.

If 4 and B be the centres of the two spheres cutting each other
at right angles, 20’ a diameter of the circle of intersection, and
the centre of that circle, then if ¥ is the potential of a conductor
whose outer surface coincides with that of the two spheres, the
quantity of electricity on the exposed surface of the sphere 4 is

3V (AD+ BD + 4C—CD—BC),
and that on the exposed surface of the sphere B is
$7°(dD+ BD+BC—CD—AC),
the total charge being the sum of these, or
I'(4D+ BD-CD).

If @ and B are the radii of the spheres, then, when a is large
compared with B, the charge on B is to that on 4 in the ratio of

3 B2 1 132
Z'fﬁ (1 +§§+5% +&c.) to 1.

Now let o be the uniform surface-density on 4 when B is re-

moved, then the charge on 4 is

47rala,
and therefore the charge on B is

13
3nplo (1 +§; +&c.):

or, when B is very small compared with a, the charge on the
hemisphere B is equal to three times that due to a surface-density o
extending over an area cqual to that of the circular base of the
hemisphere.

It appears from Art. 175 that if a small sphere is made to touch
an electrified body, and is then removed to a distance from it, the
mean surface-density on the sphere is to the surface-density of the
body at the point of contact as #2 is to 6, or as 1.645 to 1.

225.1 The most convenient form for the proof plane is that of
a circular disk. We shall therefore shew how the charge on a
circular disk laid on an eleetrified surface is to be measured.

For this purpose we shall construct a value of the potential
function so that one of the equipotential surfaces resembles a circular
flattened protuberance whose gencral form is somewhat like that of
a disk lying on a plane.
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Let o be the surface-density of a plane, which we shall suppose
to be that of zy.

The potential due to this electrification will be

V=-dneo:.

Now let two disks of radius « be rigidly electrified with surface-
densities —o" and +a’. Let the first of these be placed on the plane
of xy with its centre at the origin, and the second parallel to it at
the very small distance e.

Then it may be shewn, as we shall sce in the theory of mag-
netism, that the potential of the two disks at any point is wo’c,
where « is the solid angle subtended hy the edge of either disk at
the point. Hence the potential of the whole system will be

V=—4ncs:4wd e

The forms of the equipotential surfaces and lines of induction
are given on the left-hand side of Fig. XX, at. the end of Vol. I1.

Let us trace the form of the surface for which ¥ = 0. This
surface is indicated by the dotted line.

Putting the distance of any point from the axis of z = », then,
when 7 is much less than ¢, and ¢ is small,

= 27— i &'.
w 21ra+ ¢

Hence, for values of r considerably less than a, the equation of
the zero equipotential surface is

o , 2e
0=—4noz4+2ndc~270 -d--{-&c.;
’
T
O 2 = cme————-
0 ¢
2040 —
@

Hence this equipotential surface near the axis is nearly flat.
Outside the disk, where 7 is greater than e, w is zero when z is
zero, so that the plane of 2y is part of the equipotential surface.
To find where these two parts of the surface meet, let us find at
. . AV
what point of this plane {;1"5 = 0.

~

When 7 is very nearly cqual to «

dV 2a’c
dz = —Amat r—a
Hence, when
{/ V_ 0 o'e
dz — 7 W=ty g

The equipotential surface /"= 0 is therefore composed of a disk-
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like figure of radius 7,, and nearly uniform thickness z,, and of the
part of the infinite plane of 2y which lics heyond this figure.

The surface-integral over the whole disk gives the charge of
electricity on it. It may be found, as in the theory of a circular

current in Part TV, to he
8a

Ty—u
o
The charge on an cqual area of the plane surface is w o 7,2, hence
the charge on the disk exceeds that on an equal area of the plane
in the ratio of

Q=4nad'c{log — 2} 47 o gt

87 .
1+8§ log—:’—'z‘ to unity,

where z is the thickness and » the radius of the disk, z being sup-
posed small compared with 7.

On Electric dccumulators and the Measurement of Capacity.

226.] An Accumulator or Condenser is an apparatus consisting
of two conducting surfaces scparated by an insulating dielectric
medium.

A Leyden jar is an accumaulator in which an inside coating of
tinfoil is separated from the outside coating by the glass of which
the jar is made. The original Leyden phial was a glass vessel
containing water which was separated by the glass from the hand
which held it.

The outer surface of any insulated eonductor may he considered
as one of the surfaces of an accumulator, the other being the earth
or the walls of the room in which it is placed, and the intervening
air being the diclectric medium.

The capacity of an accumulator is measured by the quantity of
electricity with which the inner surface must be charged to make
the difference between the potentials of the surfaces unity.

Since every electrical potential is the sum of a number of parts
found by dividing cach clectrical clement by its distance from a
point, the ratio of a quantity of electricity to a potential must
have the dimensions of a line, Hence clectrostatic capacity is a
lincar quantity, or we may measure it in feet or metres without
ambiguity.

In electrical researches accumulators are used for two principal
purposes, for receiving and retaining large quantities of electricity
in as small & compass as possible, and for measuring definite quan-
titics of eclectricity by means of the potential to which they raise
the accumulator.
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For the retention of electrical charges nothing has heen devised
more perfect than the Leyden jar, The principal part of the loss
arises from the electricity creeping along the damp uncoated surface
of the glass from the one coating to the other, This may be checked
in a great degree by artificially drying the air within the Jjar, and
by varnishing the surface of the glass where it is exposed to the
atmosphere.  In Sir W. Thomson’s electroscopes there is a very
small percentage of loss from day to day, and I Delieve that none
of this loss can be traced to direct conduction either through air
or through glass when the glass is good, but that it arises chiefly
from superficial conduction along the various msulating stems and
glass surfaces of the instrument.

In fact, the same eclectrician has communicated a charge to
sulphurie acid in a Jarge hulb with a long neck, and has then her-
metically sealed the neck by fusing it, so that the charge was com-
Pletely surrounded by glass, and after some years the charge was
found still to be retained.

It is only, however, when cold, that glass insulates in this
way, for the charge cscapes at once if the glass is heated to
a temperature below 100°C.

When it is desired to obtain great capacity in small compass,
accumulators in which the dielectric is shect caoutchoue, mica, or
paper impregnated with paraffin are convenient.

R27.] For accumulators of the second class, intended for the
measurement of quantities of electricity, all rolid diclectrics must be
employed with great caution on account of the property which they
possess called Electric Absorption.

The only safe diclectric for such accumulators is air, which has
this inconvenience, that if any dust or dirt gets into the narrow
space between the opposed surfaces, which ought to be occupied only
by air, it not only alters the thickness of the stratum of air, but
may establish a connexion Letween the opposed surfaces, in which
case the accumulator will not hold a charge.

To determine in absolute measure, that is to say in feet or metres,
the capacity of an accumulator, we must either first ascertain its
form and size, and then solve the problem of the distribution of
clectricity on its opposed surfaces, or we must compare its eapacity
with that of another accumulator, for which this problem has heen
solved.

As the problem is a very difficult one, it is hest to begin with an
accumulator constructed of a form for which the solution is known.

e v e e e
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Thus the capacity of an insulated sphere in an unlimited space is
known to be measured by the radius of the sphere.

A sphere suspended in a room was actually used by MM, Kohl-
rausch and Weber, as an absclute standard with which they com.
pared the capacity of other accumulators,

The capacity, however, of a sphere of moderate size is so small
when compared with the capacities of the accumulators in common
use that the sphere is not a convenient standard measure.

Its capacity might he greatly increased by surrounding the
sphere with o hollow concentric spherical surface of somewhat
greater radius, The capacity of the inner surface is then a fourth
proportional to the thickness of the stratum of air and the radii of
the two surfaces,

Sir W. Thomson has employed this arrangement as a standard of
capacity, but the difieulties of working the surfaces truly spherical,
of making them truly concentric, and of measuring their distance
and their radii with sufficient aceuracy, are considerable,

We are thercfore led to prefer for an absolute measure of eapacity
a form in which the opposed surfaces are parallel planes.

The accuracy of the surface of the planes can he easily tested,
and their distance can be measured by a micrometer screw, and
may be made capable of continuous variation, which is a most
important property of a measuring instrument,

The only difficulty remaining arises from the fact that the planes
must necessarily be bounded, and that the distribution of clectricity
near the houndaries of the planes has not been rigidly ealeulated.
It is true that if we make them equal circular disks, whose radius
is large compared with the distance between them, we may treat
the edges of the disks as if they were straight lines, and calcalate
the distribution of electricity by the method due to Helmholtz, and
deseribed at Art. 202, But it will be noticed that in this case
part of the electricity is distributed on the back of each disk, and
that in the calculation it las been supposed that there are no
conductors in the neighbourhood, which is not and cannot be the
case in a small instrument,

228.] We therefore prefer the following arrangement, due to
Sir W. Thomson, which we may call the Guard-ring arrangement,
by means of which the quantity of electricity on an insulated disk
may be exactly determined in terms of its potential.
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The Guard-ring Aecumulator.
Bé is a eylindrical vessel of conducting material of which the
outer surface of the upper face is accurately plane.  This upper
surface consists of two parts,

l""" a disk .4, and a broad ring

| BB sarrounding  the disk,

- C } separated from it by a very
small interval all round, Just

F 5 = 1 sufficient to prevent sparks
A OO/ G G ' passing. The upper surface
L - of the disk is accurately in

the same plane with that of
the guard-ring. The disk is
supported by pillars of insulating material G/, ¢ is a metal disk,
the under surface of which is accurately plane and parallel to A5,
The disk C is considerably larger than . Tts distance from A
is adjusted and menasured by means of a micrometer serew, which

Fig. 20,

is not given in the figure,

This accumulator is used as a measuring instrument, as follows : —

Suppose € to be at potential zero, and the disk 4 and vessel B4
both at potential 7. Then there will be no clectrification on the
back of the disk hecause the vessel is nearly closed and is all at the
same potentiul.  There will be very little electrification on the
edges of the disk because BJA is at the same potential with the
disk.  On the face of the disk the electrification will be nearly
uniform, and therefore the whole charge on the disk will be almost
exactly represented by its area multiplied by the surface-density on
a plane, as given at Art. 124,

In fact, we learn from the investigation at Art. 201 that the
charge on the disk is

eSO e S
18 84 d+ai’
where B is the radius of the disk, 2 that of the hole in the guard-
ring, 4 the distance hetween . and C, and a a quantity which
9
cannot exceed (R — R) ]—0%‘:-
If the interval between the disk and the guard-ring is small
compared with the distance between A and C, the seeond term will
be very small, and the charge on the disk will he nearly

8.

et -
DRI 8 1 s e




229.] COMPARISON OF CAPACITIES. 285

Now let the vessel A4 Le put in connexion with the carth. The
charge on the disk A will no longer be uniformly distributed, but it
will remain the same in quantity, and if we now discharge 4 we
shall obtain a quantity of electricity, the value of which we know
in terms of ¥, the original difference of potentials and the measur-
able quantities 2, 7 and .

On the Comparisor of the Capacily of deeumudators.

R29.7 The form of accumulator which is best fitted to have its
capacity determined in absolute measure from the form and dimen-
sions of its purts is not generally the most suitable for electrical
experiments. It is desirable that the measures of capacity in actual
use should he accumulators having only two conducting surfaces, one
of which is as nearly as possible surrounded by the other, The
guard-ring aceumulator, on the other hand, has three independent
conducting portions which must he charged and discharged in a
certain order.  Hence it is desirable to be able to compare the
capacities of two accumulators by an electrical process, so as to test
accumulators which may afterwards serve as secondary standards,

I shall first shew how to test the equality of the capacity of two
guard-ring accumulators,

Lt A be the disk, B the guard-ring with the rest of the con-
ducting vessel attached to it, and C the large disk of one of these
accumulators, and let A, B, and ¢’ be the corresponding parts of
the other.

If cither of these accumulators is of the more simple kind, having
only two conductors, we have only to suppress 5 or 4, and to
suppose 4 to be the inner and € the outer conducting surfuce, C
in this case heing understood to surround .

Let the following connexions be made.

Let B8 be kept always connected with C’, and & with C, that is,
let cach guard-ring be connected with the large disk of the other
condenser.

(1) Let A be connected with B and ¢’ and with J, the electrode
of a Leyden jar, and let 4’ be connected with & and € and with
the earth.

(2) Let A, B, and €’ be insulated from J.

(3) Let A be insulated from B and ¢’, and 4’ from J and C".

(4) Let B and €’ be connected with 47 and € and with the
earth.

(5) Let 4 be connected with A’.
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(6) Let 4 and 4" be connected with an clectroscope E.
We may express these connexions us follows :—

(1) 0=C=H8=4a ! A=B=0"=J,
(2 0=C=bF=.1 ] A=B=C" , J.
@) 0=C=8L"|da | 4 | B=C".

(1) 0=C=8|ua | 4| B=C"=o.
() 0=C=B|Ad = 4|B=C=o.
(6) 0=C=8|d=Fk=4 | B=C’=o0.

Here the sign of equality expresses clectrical connexion, and the
vertical stroke expresses insulation,

In (1) the two accumulators are charged oppositely, so that 4 is
positive and 4" negative, the charges on 4 and A being uniformly
distributed on the upper surfuce opposed to the large disk of each
accumulator.

In (2) the jar is removed, and in (3) the charges on 4 and 4’ are
insulated,

In (4) the guard-rings are connected with the large disks, so that
the charges on 4 and ', though unaltered in magnitude, are now
distributed over their whole surface.

In (5) 4 is connected with 4’. If the charges are equal and of
opposite signs, the elcctrification will he entirely destroyed, and
in (6) this is tested by means of the electroscope 2,

The electroscope & will indicate positive or negative electrification
according as 4 or A’ has the greater capacity.

By means of a key of proper construction, the whole of these
operations can be performed in due succession in g very small
fraction of a second, and the capacities adjusted till no electri-
fication can be detected by the clectroscope, and in this way the
capacity of an accumulator may be adjusted to be equal to that of
any other, or to the sum of the capacities of several accumulators,
80 that a system of accumulators may be formed, each of which has
its capacity determined in absolute measure, 1. e. in feet or in metres,
while at the same time it is of the construction most suitable for
electrical experiments.

This method of comparison will: probably be found useful in
determining the specific capacity for eclectrostatic induction of
different dielectries in the form of plates or disks. If a disk of
the diclectric is interposed between 4 and €, the disk being con-
siderably larger than 4, then the capacity of the accumulator will
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be altered and made equal to that of the same accumulator when 4
and C are nearer together. If the accumulator with the diclectric
plate, and with # and C at distance @, is of the same capncity as
the same accumulator without the dielectric, and with 4 and ¢ at
distance o/, then, if ¢ is the thickness of the plate, and K its specific
dielectric inductive capacity referred to air as a standard,
. a
b=

The combination of three cylinders, described in Art. 127, has
been employed by Sir W. Thomson as an accumulator whose capa-
city may be inereased or diminished by measurable quantities,

The experiments of MM. Gibson and Barclay with this ap-
paratus are deseribed in the Proceedings o/ the Royal Society, Feb, 2,
1871, and PZil. Trans., 1871, p. 573. They found the specific in-
ductive capacity of paraffin to be 1975, that of air being unity.



PART IL
ELECTROKINEMATICS.

CHAPTER 1
THE ELECTRIC CURRENT.

230.] Wi have seen, in Art. 45, that when a conductor is in
clectrical equilibrium the potential at every point of the conductor
must be the same.

If two conductors 4 and I are charged with electricity so that
the potential of 4 is higher than that of B, then, if they are put
in communication by means of a metallic wire C touching hoth of
them, part of the charge of 4 will be transferred to B, and the
potentials of £ and B will beecome in a very short time equalized.

231.] During this process certain phenomena are observed in
the wire ¢, which arc called the phenomena of the electric conflict
or current,

The first of these phenomena is the transference of positive
electrification from 4 to B and of negative electrification from B
to 4. This transference may be also effected in a slower manner
by bringing a small insulated body into contact with 4 and B
alternately, By this process, which we may call clectrical con-
vection, successive small portions of the clectrifieation of each body
are transferred to the other. In ecither case a certain quantity of
electricity, or of the state of electrification, passes from one place
to another along a certain path in the space between the bodies.

Whatever thercfore may be our opinion of the mature of clec-
tricity, we must admit that the proeess which we have described
constitutes a current of electricity. This current may be described

A e T
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as a current of positive clectricity from 4 to B, or a current of
negative electricity from B to A, or as a combination of these two
currents.

According to Fechner’s and Weher's theory it is a combination
of a current of positive electricity with an exactly equal current
of negative electricity in the opposite dircetion through the same
substance. It is necessary to remember this exceedingly artificial
hypothesis regarding the constitution of the current in order to
understand the statement of some of Weber's most valuable ex-
perimental results,

If, as in Art. 36, we suppose P units of positive electricity
transferred from .f to B, and IV units of negative electricity trans-
ferred from B to . in unit of time, then, according to Weber’s
theory, =N, and P or Nis to be taken as the numerical measure
of the current,

We, on the contrary, make no assumption as to the relation
between 2 and &, bhut attend only to the result of the current,
namely, the transference of P4V of positive electrification from
to £, and we shall consider P4 N the true measure of the current,
The current, therefore, which Weber would eall 1 we shall call 2,

On Steady Currents.

?32.] In the case of the current hetween two insulated con-
ductors at different potentials the operation is soon brought to
an end by the equalization of the potentials of the two bodies,
and the current is therefore essentially o Transient current.

But there are methods by which the difference of potentials of
the conductors may be maintained constant, in which case the
current will continue to flow with uniform strength as a Steady
Current.

The Poltaic Battery,

The most convenient method of producing a steady current is by
means of the Voltaic Battery.

For the sake of distinetness we shall deseribe Daniell’s Constant;
Battery :—

A solution of sulphate of zinc is placed in a cell of porous earth-
enware, and this eell is placed in a vessel containing a saturated
solution of sulphate of copper. A picee of zine is dipped into the
sulphate of zine, and a picce of copper is dipped into the sulphate
of copper. Wires are soldered to the zine and to the copper above

VOL. I. U
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the surface of the liquid. This combination is called a cell or
clement of Daniell’s battery. See Art. 272,

233.] If the cell is insulated Ly being placed on a non-con-
ducting stand, and if the wire conneeted with the copper is put
in contact with an insulated conductor A, and the wire connected
with the zine is put in contact with /2, another insulated conduetor
of the same metal as -, then it may be shewn by means of a delicate
electrometer that the potential of A exceeds thut of 7 by a certain
quantity. This difference of potentials is ealled the Eloetromotive
Force of the Daniell’s Cell,

If . and B are now disconnceted from the cell and put in
communication by means of a wire, a transient current passes
through the wire from 4 to B, and the potentials of A and £
become equal. 4 and B may then be charged again by the cell,
and the process repeated as long as the cell will work., But if
A and B be connected by means of the wire ¢, and at the same
time connected with the battery as hefore, then the cell will main-
tain a constant current through €, and also a constant difforence
of potentials between o and 5. This difference will not, as we
shall see, be equal to the whole electromotive force of the cell, for
part. of this force is spent in maintaining (he ewrrent through the
cell itself.

A number of cells placed in series so that the zine of the first
eell is connected by metal with the copper of the second, and
s0.on, is clled a Voltaic Battery. The electromotive force of
such a Dattery is the sum of the cleetromotive forces of the cells
of which it is composed. If the battery is insulated it may be
charged with clectricity as a whole, but the potential of the copper
end will always exceed that of the zine end by the clectromotive
force of the battery, whatever the absolute value of cithor of these
potentials may be. The cells of the hattery may be of very various
constiruction, containing: different chemieal substances and different
metals, provided they are such that chemical action does not go
on when no current passes,

234. | Let us now consider a voltaic battery with its ends insulated
from cach other. The copper end will be positively or vitreously
clectrified, and the zine end will he negatively or resinously clectrified.

Let the two ends of the battery be now connected by means
o wire.  An clectric current will commence, and will in a very
short time attain a constant value. It is then said to be a Steady
Current,
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Properties of the Current.

235.] The current forms a closed circuit in the direction from
copper to zine through the wires, and from zine to copper through
the solutions,

If the civeuit be Dbroken by cutting any of the wires which
connect the copper of one cell with the zine of the next in order, the
current will be stopped, and the potential of the end of the wire
in connexion with the copper will be found to exceed that of the
end of the wire in connexion with the zine by a constant quantity,
naniely, the total eleetromotive foree of the circuit.

FElectrolytic detion of the Current.

R36.] As long as the circuit is broken no chemical action goes
on in the cells, hut as soon as the circuit is completed, zine is
dissolved from the zinc in cach of the Daniell’s cells, and copper is
deposited on the copper,

The quantity of sulphate of zine increases, and the quantity of
sulphate of copper diminishes unless more is constantly supplied.

The quantity of zinc dissolved and algo that of copper deposited is
the same in each of the Daniell’s cells throughout the circuit, what-
ever the size of the plates of the cell, and if any of the cells be of a
different construction, the amount of chemical action in it bears
a constant proportion to the action in the Daniell’s cell. For
instance, if one of the cells consists of two platinum plates dipped
into sulphuric acid diluted with water, oxygen will be given off
at the surface of the plate where the current enters the liquid,
namely, the plate in metallic connexion with the copper of Daniell’s
cell, and hydrogen at the surface of the plate where the current
leaves the liquid, namely, the plate connected with the zine of
Daniell’s cell.
~ The volume of the hydrogen is exactly twice the volume of the
oxygen given ofl'in the same time, and the weight of the oxygen is
exactly eight times the weight of the hydrogen.

In every cell of the cireuit the weight of each substance dissolved,
deposited, or decomposed is equal to a certain quantity called the
electrochemical equivalent of that substance, multiplied by the
strength of the current and by the time during which it has
been flowing.

For the experiments which established this principle, see the
seventh and cighth series of Faraday’s Eaperimental Rescarches;

Uz
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and for an investigation of the apparent. exceptions to the rule, see
Miller’s Chemical Llysics and Wiedemanw’s Gaeleanismus.

R37.] Substances which are decomposed in this way are called
Eleetrolytes,  The process is culled Eleetrolysis. The places where
the current enters and leaves the eleetrolyte are called Eleetrodes.
Of these the eleetrode by which the eurrent, enters is called the
Anode, and that, by which it leaves the electrolyte is called the
Cathode. The components into which the clectrolyte is resolved
are called Ions: thal which appears at the anode is called the
Anion, and that which appears at the cathode is called the Cation,

Of these terms, which were, I believe, invented by Faraday with
the help of Dr. Whewell, the first three, namely, electrode, elee-
trolysis, and electrolyte have heen generally adopted, and the mode
of conduction of the current in which this kind of decomposition
and transfer of the components takes place is called “Electrolytic
Conduction.

If & homogencous clectrolyte is placed in a tube of variable
section, and i the clectrodes are placed at the ends of this tube,
it is found that when the current passes, the anion appears at
the anode and the cation at the cathode, the quantities of these
ions heing electrochemically equivalent, and such as to be togcther
equivalent to a eertain quantity of the electrolyte, In the other
parts of the tube, whether the section be large or small, uniform
or varying, the composition of {he clectrolyte remains unaltered.
Hence the amount of electrolysis which takes place across every
scetion of the tube is the same. Where the section is small the
action must therefore be more intense than where the scetion is
large, but the total amount of each ion which crosses any complete
scction of the electrolyte in a given time is the same for all seetions,

The strength of the current may therefore he measured by the
amount of electrolysis in a given time.  An instrument by which
the quantity of the electrolytic products can be readily measured
1s culled a Voltameter,

The strength of the current, as thus measured, is the same
at every part of the cireuit, and the tofal quantity of the clec-
trolytic products in the voltameter after any given time is pro-
portional to the amount of clectricity which passes any section in
the same time.

238.] If we introduce a voltameter at one part of the circuit
of a voltaic hattery, and break the cirenit at another part, we may
suppose the measurement of the current to be conducted thus,

e e

ik



239.] MAGNETIC ACTION, 293

Let the ends of the broken cirenit be A4 and B, and let 4 be the
anode and 73 the cathode. Let an insulated ball be made to touch
A and B alternately, it will earry from A to B a certain measurable
quantity of cleetrieity at each journey. This quantity may be
measured by an eclectrometer, or it may he caleulated by mul-
tiplying the electromotive force of the cireuit hy the electrostatic
capacity of the ball.  Electricity is thus carried from A to 2 on the
insulated ball by a process which may be called Convection, At
the same time electrolysis goes on in the voltameter and in the
cells of the battery, and the amount of cleetrolysis in each cell may
be compared with the amount of clectricity carried across by the
insulated ball. The quantity of a substance which is clectrolysed
by one unit of electricity is called an Electrochemical equivalent
of that substance,

This experiment would he an extremely tedious and troublesome
one if conducted in this way with a ball of ordinary magnitude
and a manageable battery, for an enormous number of Jjourneys
would have to be made before an appreciable quantity of the electro-
Iyte was decomposed.  The experiment must therefore be considered
as a mere llustration, the actual measurements of eclectrochemical
equivalents being conducted in a different way. But the experi-
ment may be considered as an illustration of the process of clee-
trolysis itself, for if we regard clectrolytic conduction as a species
of convection in which an electrochemical equivalent of the anion
travels with negative electricity in the direction of the anode, while
an equivalent of the eation travels with positive clectricity in
the direction of the cathode, the whole amount of tmansfer of elee-
tricity being one unit, we shall have an idea of the process of
electrolysis, which, so far as T know, is not inconsistent with known
[aets, though, on account of our ignorance of the nature of clectricity
and of chemical compounds, it may be a very imperfect repre-
sentation of what really takes place.

Magnetic Action of the Current.

239.] Oersted discovered that a magnet placed near a straight
electric current tends to place itself at right angles to the plane
passing through the magnet and the current.  See Art. 475,

If a man were to place his body in the line of the current so
that the current from copper through the wire to zine should flow
from his head to his feet, and if he were to direct his face towards
the centre of the magnet, then that end of the magnet which tends
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to point to the north would, when the eurrent flows, tend to point
towards the man’s right Land,

The nature and laws of this clectromagnetic action will be djs
cussed when we eome to the fourth part of this treatise. What
we are concerned with at present is the faet, that the cleetrie
cutrent has a magnetic action whicl s exerted outside the current,
and by which its existence can be ascertained and itg intensity
measured without breaking the circuit or introducing: anything into
the current itself,

The amount of the magnetic action has heen ascertained to he
strictly proportional to the strength of the current as measured
by the produels of electrolysis in the voltameter, and to he (uite
independent of the nature of the conductor in which the current
s flowing, whether it he g metal or an elcet rolyte,

240.] An instrument which indieates the strength of an clectrie
current by its magnetic effects is called a Galvanometer.

Galvanometers in general consist of one or more coils of silk-
covered wire within whicl, g magnet is suspended with its ayis
horizontal.  When a current i passed through the wire the magnet
tends to set itsclf with its axis perpendicular to the plane of the
coils. If we suppose the plane of the coils to he placed parallel
to the plane of the earth’s equator, and the current to flow round
the coil from cast to west in the divection of the apparent motion
of the sun, then the magnet within will tend to set jtself with
its magnetization in the same direction as that of the eartl con-
sidered as a grent magnet, the north pole of the earth being similar
to that end of the compass needle which points soutl,

The galvanometer i the most convenient instrument for mea-
suring the strength of electric currents.  We shall therefore assume
the possibility of construcling such an instrument in studying the
laws of these currents, reserving the discussion of the principles of
the instrument for oup fourth part. When therefore we say that
an clectric current is of 5 certain strength we suppose that the
measurement is effected by the galvanometer.



CHAPTER 1I.

CONDUCTION AND RESISTANCE.

%41.] Ir by means of an clectrometer we determine the electric
potential at different points of a cireuit in which a constant clectric
current is maintained, we shall find that in any portion of the
cireuit consisting of a single metal of uniform temperature through-
out, the potentiul at any point exceeds that at any other point
farther on in the direction of the current by a quantity depending
on the strength of the eurrent and on the nature and dimensions
of the intervening portion of the circuit. The difference of the
potentials at the extremities of this portion of the cireuit is called
the External eleetromotive force acting on it, If the portion of
the circuit under consideration is not homogeneous, but contains
transitions from one substance to another, from metals to elee-
trolytes, or from hotter to colder parts, there may he, besides the
external electromotive foree, Internal electromotive forces which
must be taken into account.

The relations between Electromotive Torce, Current, and Resist-
ance were first investigated by Dr. G. 8. Ohm, in a work published
in 1827, entitled Die Galvanische Kette Mathematisch Bearbeitet,
translated in Taylor's Scientific Memoirs. 'The result of these in-
vestigations in the case of homogencous conductors is commonly
called ¢ Ohm’s Law.’

Ohw’s Law.

The electromolive force acting between the eatremities of any part
of @ circuit is lhe product of the strenglh of the current and the
Liesistance of that part of lhe circui.

Here a new term is introduced, the Resistance of a conductor,
which is defined to be the ratio of the coleetromotive force to
the strength of the current which it produces. The introduetion
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of this term would have been of no scientific value unless Ohm
had shewn, as he did experimentally, that it corresponds to a real
physical quantity, that is, that it has a definite value which is
altered only when the nature of the conductor is altered.

In the first place, then, the resistance of g conductor is inde-
pendent of the strength of the current, flowing through it.

In the second place the resistance is independent of the eleetrie
potential at which the conductor is maintained, and of the density
of the distribution of electricity on the surface of the conductor,

It depends entirely on the nature of the material of which the
condnctor is composed, the state of aggregation of itg parts, and its
temperature.

The resistance of a conductor may be measured to within one
ten thousandth or even one hundred thousandth part of its value,
and so many conductors have been tested that our assurance of the
truth of Ohm’s Law is now very high,  In the sixth chapter we
shall trace its applications and consequences.

Generation of Heut by the Current.

242.] We have seen that when an clectromotive force canses
a current {o flow through a conductor, clectricity is transferred
from a place of higher to a place of lower potential,  If the transfor
had been made by convection, that is, by carrying successive
charges on a ball from the one place to the other, work would have
been done by the clectrieal forces on the ball, and this might have
been turned to account. It is actually twrned to account in g
partial manner in those dry pile circuits where the electrodes have
the form of hells, and the carrier ball is made to swing like a
pendulum between the two bells and strike them alternately, In
this way the clectrical action is made to keep up the swinging
of the pendulum and to propagato the sound of the bells to g
distance. In the case of the conducting wire we have the same
transfer of electricity from a place of high to a place of low potential
without any external work being done. The principle of the Con-
servation of Energy therefore leads us to look for internal work in
the conductor. In an clectrolyte this internal work consists partly
of the separation of its components. In other conductors it is
entirely converted into heat,

The energy converted into heat is in this case the product of
the electromotive foree into the quantity of electricity which passes,
But the electromotive force is the product of the current into the
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resistance, and the quantity of clectricity is the product of the
current into the time.  Henee the quantity of heat multiplied by
the mechanical equivalent of unit of heat is equal to the square of
the strength of the current multiplied into the resistance and into
the time,

The heat developed by eleetric currents in overcoming the re-
sistance of conductors has been determined by Dr. Joule, who
first established that the heat produced in a given time is pro-
portional to the square of the current, and afterwards by ecareful
absolute measurements of all the quantities conecrned, verified the
equation JII = (2 R,
where J is Joule's dynamieal equivalent of heat, 7/ the number of
units of heat, C the strength of the carrent, & the resistance of the
conductor, and ¢ the time during which the current flows. These
relations hetween electromotive foree, work, and heat, were first fully
explained by Sir W. Thomson in a paper on the application of the
-principle of mechanical effect to the measurement of electromotive
forces *,

243.] The amalogy between the theory of the conduetion of
clectricity and that of the conduction of heat is at first sight almost
complete, If we take two systems geometrically similar, and such
that the conductivity for heat at any part of the first is proportional
to the conductivity for electricity at the corresponding part of the
sccond, and if we also make the temperature at any part of the
first proportional to the clectric potential at the corresponding point
of the sccond, then the flow of heat across any area of the first
will be proportional to the flow of eclectricity neross the corre-
sponding area of the second.

Thus, in the illustration we have given, in which flow of clee-
tricity corresponds to flow of heat, and electric potential to tem-
Derature, electricity tends to flow from places of high to places
of low potential, exactly as heat tends to flow from places of high
to places of low temperature,

244.] The theory of potential and that of temperaturc may
therefore be made to illustrate one another; there is, however, one
remarkable difference between the phenomena of electricity and
those of heat.

Suspend a conducting body within a closed condueting vessel by
a silk thread, and charge the vessel with electricity, The potential

* Phil. Mag., Dec. 1851,
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of the vessel and of all within it will he instantly raised, hut
however long and however powerfully the vessel 1o clectrified, and
whether the body within be allowed o eome in contact with the
vessel or not, no signs of clectrifiention wijl appear within the
vessel, nor will the body within shew any electrical effeet. when
taken out.

But if the vessel is raised to a high temperature, {he body
within will rise to the same temperature, hut, only after a con-
siderable time, and if it is then taken out it will he found hot,
and will remain so till it has continued to emit heat for some {ime,

The difference hetween the phenomena consists m the fact {hat,
bodies are capable of absorbing and emifting heat, wherens they
have no corresponding property with respeet to electricity, A body
cannot be made hot without g cerfain. amount. of heat, being
supplied to it, depending on the mass and specific heat of the body,
but the cleetrie potential of a body may he raised to any extent.
in the way already deseribed without communicating any clectricity
to the hody,

R45.] Again, supposc a body first heated and then placed inside
the closed vessel.  The outside of the vessel will be at first at {he
temperature of surrounding hodies, but it wi]] coon get, hot, an
will remain lot till the heat, of the interior hody has eseaped,

It is impossible to perform a corresponding cleetrieal exXperiment,
It is impossible so to clectrify a body, and so tg place it in o
hollow vessel, that the outside of the vessel shall af first shew no
signs of clectrification but shll afterwards hecome clectrified. It
was for some phenomenon of this kind ¢hat. Faraday sought in
vain under the name of an absolute charge of clectricity,

Heat may be hidden in the interior of g bady so as to have ne
external action, but it is impossible to isolate 2 quantity of clec-
tricity so as {o prevent it from being constantly in induetive
relation with an equal quantity of clectricity of the opposite kind,

There s nothing therefure among clectric phenomena which
corresponds to the capacity of a body for heat, Thig follows at
once from the doetrine which is asserted in this treatise, that,
clectricity obeys the same condition of continuity as an ineam.-
pressible fluid. Tt is therefore impossible to give 5 badily charge
of electricity to any substance by foreing an additional (uantity of
electricity info it. See Arts, 61, 111, 329, 33,




CHAPTER III.
ELECTROMOTIVE FORCE BETWEEN BODIES IN CONTACT.

The Potentials of Different Substances in Contact,

R46.] Ir we define the potential of a hollow conducting vessel
as the potential of the air inside the vessel, we may ascertain this
potential by means of an clectrometer as described in Part T,
Art, 222,

If we now take two hollow vesscls of different metals, say copper
and zine, and put them in metallic contact with cach other, and
then test the potential of the air inside cach vessel, the potential
of the air inside the zine vessel will he positive as compared with
that inside the eopper vessel. The difference of potentials depends
on the nature of the surface of the insides of the vessels, being
greatest when the zinc is bright and when the copper is coated
with oxide.

It appears from this that when two difforent metals are in
contact there is in general an electromotive force acting from the
one to the other, so as to make the potential of the one exceed
that of the other by a certain quantity. This is Volta's theory of
Contact Eleetricity.

If we take a certain metal, say copper, as the standard, then
if the potential of iron in contact with copper at the zero potential
is /, and that of zinc in contact with copper at zero is Z, then
the potential of zinc in contact with iron at zero will be Z—1.

It appears from this result, which is true of any three metals,
that the differences of potential of any two mectals at the same
temperature in contact is equal to the difference of their potentials
when in eontact with a third metal, so that if a cireuit Le formed
of any number of metals at the same temperature there will he
electrical equilibrium as soon as they have acquired their proper
potentials, and there will be no current kept up in the cireuit.
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247.] If, however, the cireuit, consist of two metals and an clec-
trolyte, the clectrolyte, according to Volta’s theory, tends to reduce
the potentials of {he metals in contact with it {o equality, so that
the electromotive force at the metallic junction is no longer halaneed,
and a continuous current s kept up,  The energy of this current
is supplied by the chemiea] action which takes pPlace between the
clectrolyte and the metals,

R48.] The eclectric effect may, however, be produced without
chemical action if by any other means we can produce an cquali-
zation of the potentials of two metals in contacf. Thus, in an
experiment due to Sir W, Thomson *, 5 copper funnel is placed ip
contact with a vertical zine cylinder, so that when copper filings
are allowed to pass through the funnel, they separate from cach
other and from the funnel near the middle of the zine eylinder,
and then fall into an insulated receiver placed below,  The receiver
is then found to be charged negatively, and the charge inereases
as the filings continue to pour into it. At the same time the zine
eylinder with the copper fannel in it heeomes charged more ang
more positively,

If now the zine eylinder were connected with the recojverp by a
wire, there would be a Positive eurrent, in the wire from the cylinder
to the receiver.  The stream of copper filings, cach filing charged
negatively by induction, constitutes a negative enrrent from the
funnel to the receiver, or, in other words, a posilive current from
the receiver to the copper funnel. The positive current, therefore,
passes through the air (by the filings) from zine to copper, and
throngh the metallic Junction from copper to zine, just as in the
ordinary voltaic arrangement, but in this cage the foree which keeps
up the current is not chemical action but gravity, which causes the
filings to fall, in spite of the electricnl attraction between the
positively charged funnel and the negatively charged filings,

240.] A remarkable confirmation of the theory of contact elec.
tricity is supplied by the discovery of Peltier, that, when a current
of clectricity crosses the Junction of two metals, the junction ig
heated when the current is in one direction, and eooled when 1t
is in the other direction. Tt must he remembered that, g current
in its passage through a metal always produces heat, hecause it
meets with resistanee, so thyt the cooling effect on the whole
conductor must always be less than the heating effect. We must
therefore distinguish between the generation of heat in cach metal,

North British dicriew, 1864, 1353; and Dy 1, S., June 20, 1867.
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due to ordinary resistance, and the generation or ahsorption of heat
at the junction of two metals, We shall eall the first the frictional
generation of heat by the ewrrent, and, as we have seen, it is
proportional to the square of the current, and is the same whether
the current be in the positive or the negative direction. The second
we may call the Peltier effect, which changes its sign with that
of the current.

The total heat generated in a portion of a compound conductor
consisting' of two metals may he expressed by

£,
1] = 70 t=—T1C¢,

where 77 is the quantity of heat, J the mechanical equivalent of
unit of heat, £ the resistance of the conductor, € the current, and
¢ the time ; IT being the coeflicient of the Peltier cffect, that is,
the heat absorbed at the junction due to the passage of unit of
current for unit of time.

Now the heat generated is mechanically equivalent to the work
done against electrical forces in the conductor, that is, it is equal
to the product of the current into the electromotive force producing
it.  Hence, if # is the external electromotive foree which causes
the current to flow through the conductor,

JI = CEt=RCt-JI1C,
whence I =RC-JII.

It appears from this equation that the external clectromotive
foree required to drive the current throngh the compound conductor
is less than that due to its resistance alone by the electromotive
foree JTI. Tence JIT represents the clectromotive contact force
at the junction acting in the positive direction.

This application, due to Sir W. Thomson *, of the dynamical
theory of heat to the determination of a local electromotive force
is of great scientific importance, since the ordinary method of
connecting two points of the compound conductor with the elec-
trodes of a galvanometer or clectroscope by wires would be useless,
owing to the contact forces at the junctions of the wires with
the materials of the compound conductor, In the thermal method,
on the other hand, we know that the only source of encray is the
carrent of clectricity, and that no work is done by the current
in a certain portion of the eircuit except in heating that portion
of the conductor. If, therefore, we can measure the amount of the

* Proc. R.S. Bilin., Dec. 15, 1851 ; and Trans. R. 8. Edin., 1854,
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current and the amount of lheat produced or absorbed, we can
determine the electromotive foree required to wge the current
through that portion of the conductor, and this measurement is
entirely independent of the effect of contact forees in other parts of
the cirenit.

The clectromotive foree at the junection of two metals, as de-
termined by this method, does not account for Volta’s clectromotive
force as deseribed in Art. 216, The latter is in general far greater
than that of this Article, and is sometimes of opposite sign. Hence
the assumption that the potential of a metal is to be measured by
that of the air in contact with it must be erroncous, and the greater
part of Volta’s clectromotive foree must he sought for, not at the
Junction of the two metals, hut at one or both of the surfaces which
separate the metals from the air or other medium which forms the
third element of the cireuit.

250.] The discovery by Scebeck of thermoelectric currents in
circuits of different metals with their Jjunctions at different tem-
peratures, shews that these contact forces do not always balance
cach other in a complete cireuit, Tt is manifest, however, that
in a complete cirenit of different metals at uniform temperature the
contact forces must halance cach other, For if this were not the
ase there would be a current formed in the circuit, and this current
might be employed to work a machine or to generate heat iy the
cireuit, that is, to do work, while at the same time there is no
expenditure of energy, as the cireuit is all at the same temperature,
and no chemical or other change takes place.  Hence, if the Peltier
effect at the junction of two metals « and ¢ be represented by 11,
when the eurrent flows from « {o o, then for a cireuit of two metals
at the same temperature we must have

Im,+11,, = 0,
and for a circuit of three metals g, b, ¢, we must have
I, +11,, 4 1, = 0.

It follows from this equation that the three Pelticr effects are not,
independent, but that one of them ean be deduced from the other
two.  For instance, if we suppose ¢ to be a standard metal, and
if we write £, = JJIT,, and P, = J11,,, then

J, =P, —~D,.

The quantity 2, is a function of the temperature, and depends on

the mature of the metal a.

() e

R5L] It has also been shewn by Magnus that if a circuit is
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formed of a single metal no current will be formed in it, however
the section of the conductor and the temperature may vary in
different parts,

Since in this case there is conduction of heat and consequent
dissipation of energy, we cannot, as in the former case, consider this
result as self-evident. The electromotive force, for instance, between
two portions of a circuit might have depended on whether the
current was passing from a thick portion of the conductor to a thin
one, or the reverse, as well as on its passing rapidly or slowly from a
hot portion to a cold one, or the reverse, and this would have made
a current possible in an unequally heated cirenit of one metal.

Hence, by the same reasoning as in the ease of Peltier's phe-
nomenon, we find that if the passage of a current through a
conductor of one metal produces any thermal effect which is re-
versed when the current is reversed, this can only take place when
the current flows from places of high to places of low temperature,
or the reverse, and if the heat generated in a eonductor of one
metal in flowing from a place where the temperature is 2 to a
place where it is y, is 2/, then

JI = RC*—8,,Ct,
and the clectromotive force tending to maintain the current will
be S,,.

It @, y, = be the temperatures at three points of a homogencous

vireuit, we must have
8yt 8, +8,, =0,

according to the result of Magnus. Hence, if we suppose = to he
the zero temperature, and if we put

Q_, = S” and Qy S :S'”:,
we find Sﬂ, e Qx_ an
where @, is a function of the temperature 2, the form of the
function depending on the nature of the metal.

If we now consider a cireuit of two metals « and & in which
the temperatare is 2 where the current passes from « to 4, and
# where it passes from 4 to a, the clectromotive foree will he

= ])ur_])lu' + ann_ Ql‘//+ 'Z)bll_])ﬂll + Q'l!/* Qu-“
where P, signifies the value of P for the metal « at the tempera-
ture a, or

rr= 1)(”:_ Qu.z_ (])uu - Quy) - (l)lu: - Ql:.r) + I)Iq/ - eru .
Since in unequally heated circuits of different metals there are in
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general thermoelectric currents, it follows that P and @ are in
general different for the same metal and same temperature.

252.] The existence of the quantity @ was first demonstrated by
Sir W. Thomson, in the memoir we have referred to, as a deduetion
from the phenomenon of thermoclectric inversion discovered by

summing ¥, who found that the order of certain metals in the ther-

moeleetric scale is different at high and at low temperatures, so that
for a certain temperature two metals may be neutral to cach other.
Thus, in a cireuit of copper and iron if one Junction be kept at the
ordinary temperature while the temperature of the other is raised,
a current sets from copper to iron through the hot Junction, and
the clectromotive force continues to increase ill the hot Junction
has reached a temperature 7, which, according to Thomson, is
about 281°C.  When the temperature of the hot junction is raised
still further the electromotive force is reduced, and at last, if the
temperature be raised high enough, the current is reversed. The
reversal of the current may be obtained more easil y by raising the
temperature of the colder junction. If the temperature of hoth
junctions is above 7' the current sets from iron to copper through
the lotter junction, that is, in the reverse direction to that ob-
served when both junetions are helow 7'

Hence, if one of the junctions is at the neutral temperature 7'
and the other is either hotter or colder, the current will set from
copper to iron through the junction at the neutral temperature.

253.] From this fact Thomson reasoned as follows :—

Suppose the other junction at a temperature lower than 7.
The current may be made to work an engine or to generate heat in
a wire, and this expenditure of cuergy must be kept up by the
transformation of heat into electric energy, that is to say, heat
must disappear somewhere in the ecircuit. Now at the tempera-
ture 7' iron and copper are neutral to each other, so that no
reversible thermal effect is produced at the hot Junction, and at
the cold junction there is, by Peltier’s principle, an evolution of
heat.  Hence the only place where the heat can disappear is in the
copper or iron portions of the circuit, so that either a current in
ron from hot to cold must cool the Iron, or a current in copper
from eold to hot must cool the copper, or both these effeets may
take place. By an claborate series of ingenious experiments Thom-
son succecded in detecting the reversible thermal action of the
current. in passing hetween parts of different temperatures, and

* Cambridye Transactions, 1823.
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he found that the current produced opposite cffects in copper and
in iron *,

When a stream of a material fluid passes along a tube from
a hot part to a-cold part it heats the tube, and when it passes
from cold {o hot it cools the tube, and these effeets depend on
the specific eapacity for heat of the fluid. IFf we supposed elec-
tricity, whether positive or negative, to be a material fluid, we
might measure its speeific heat by the thermal effect on an un-
cqually heated conductor. Now Thomson’s experiments shew that
positive electricity in copper and negative electricity in iron carry
heat with them from hot to cold. Hence, if we supposed cither
positive or negative electricity to be a fluid, capable of being
heated and cooled, and of communicating heat to other bodies, we
should find the supposition contradicted by iron for positive clee-
tricity and by copper for negative electricity, so that we should
have to abandon hoth hypotheses.

This scientific prediction of the reversible effect of an electric
current upon an unequally heated conductor of one metal is another
instructive example of the application of the theory of Conservation
of Energy to indicate new directions of scientific rescarch, Thomson
has also applied the Second Law of Thermodynamies to indicate
relations between the quantities which we have denoted by P
and @, and has investigated the possible thermoelcetric properties
of bodies whose structure is different in different directions. He
has also investigated experimentally the conditions under which
these properties are developed by pressure, magnctization, &e.

254.] Professor Taitt has recently Investigated the clectro-
motive force of thermoelectric circuits of different metals, having
their junctions at different temperatures. He finds that the elec.
tromotive force of a circuit may be expressed very accurafely by
the formula

= a(fy~1,) [tu-‘& (i +1,)],
where ¢, is the absolute temperature of the hot Jjunction, 7, that
of the cold junction, and ¢, the temperature at which the two metals
are neutral to each other. The factor « is a coeflicient depending
on the nature of the two metals composing the circuit. This law
has been verified through considerable ranges of temperature by
Professor Tait and his students, and he hopes to make the thermo-
clectric circuit available as a thermometric instrument in his

* ¢On the Llectrodynamic Qualities of Metals.! Phil. Trans., 1856.
+ Proe. R. S, Edin., Session 1870-71, p. 308, also Dec, 18, 1871.
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experiments on the conduction of heat, and in other cases in which
the mereurial thermometer is not convenient or has not a suflicient
range.

According to Tait’s theory, the quantity which Thomson calls
the specific heat of cleetricity is proportional to the absolute tem-
perature in cach pure metal, though its magnitude and even its
sign vary in dilferent metals.  From this he has deduced hy ther-
modynamic principles the following results. Lot holy bty k¢t
be the specific heats of electricity in three metals a, b, ¢, and let
Loy 1., 1, be the temperatures at which pairs of these metals are
neatral to cach other, then the equations

By b ) Lot (Ro— k) Loy 4k~ A) T = 0,

Sy = (h—=h) (T, 1),

L = (be=h)(t, - L) [ Ta—3 (h+4)]
express the relation of the neutral temperatures, the value of the
Peltier eftect, and the electromotive foree of a thermoelectric cirenit,




CIHAPTER IV,
ELECTROLYSIS,

Electrolytic Conduetion.

255.] I uave already stated that when an clectric current in
any part of its cirenit passes through certain compound substances
called Electrolytes, the passage of the current is accompanied by
a certain chemieal process called Electrolysis, in which the substance
is resolved into two components called Tons, of which one, called
the Anion, or the clectronegative component, appears at the Anode,
or place where the current enters the clectrolyte, and the other,
called the Cation, appears at the Cathode, or the place where the
current leaves the electrolyte.

The complete investigation of Eleetrolysis belongs quite as much
to Chemistry as to Electricity. We shall consider it from an
eleetrical point of view, without discussing its application to the
theory ol the eonstitution of chemical compounds,

Of all electrical phenomena electrolysis appears the most likely
to furnish us with a real insight into the trae nature of the electric
current, beeause we find currents of ordinary matter and currents
of electricity forming essential parts of the same phenomenon.,

It is probably for this very reason that, in the present imperfectly
formed state of our ideas about clectricity, the theories of electro-
lysis are so unsatisfactory.

The fundamental law of electrolysis, which was established by
Faraday, and confirmed by the experiments of Beetz, Hittorf, and
others down to the present time, is as follows :—

The number of eleetrochemical equivalents of an electrolyte which
are decomposed by the passage of an clectrie current during a given
time is equal to the number of units of cleetricity which are trans-
ferred by the current in the same time.

The clectrochemical equivalent of a substance is that quantity

X2
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of the substance which is electrolysed by a unit current passing
through the substance for a unit of time, or, in other words, by the
passage of a unit of clectricity. When the unit of clectricity is
defined in absolute measure the absolute value of the electro-
chemical equivalent of cach substance can be determined in grains
or in grammes,

The electrochemical equivalents of different substances are pro-
portional to their ordinary chemical equivalents. The ordinary
chemical equivalents, however, are the mere numerical ratios in
which the substances combine, whereas the cleetrochemieal equi-
valents are (nantitics of matter of n determinate magnitude, de-
pending on the definition of the unit of clectricity.

Lvery clectrolyte consists of two components, which, during the
electrolysis, appear where the current enters and leaves the clec-
trolyte, and nowhere else.  Ilence, if we conceive a surface deseribed
within the substance of the electrolyte, the amount of clectrolysis
which takes place through this surface, as measured by the clec-
trochemical equivalents of the components transferred ucross it
in opposite directions, will be proportional to the total eleetric
current through the surface,

The actual transfer of the ions through the substance of the
clectrolyte in opposite directions is therefore part of the phenomenon
of the conduction of an electrie current through an clectrolyte. At
every point of the clectrolyte through which an clectric current
is passing there are also two opposite material currents of the anion
and the cation, which have the same lines of flow with the electric
eurrent, and are proportional to it in magnitude.

It is therefore extremely natural to suppose that the currents of
the ions are convection currents of clectricity, and, in particular,
that every molecule of the cation is charged with a certain fixed
quantity of positive clectricity, which is the same for the molecules
of all eations, and that every molecule of the anion is charged with
an equal quantity of negative clectricity.
~ The opposite motion of the ions through the electrolyte would
then be a complete physical representation of the electric current,.
We may compare this motion of the jons with the motion of gases
and liquids through ecach other during the process of diffusion,
there being this difference between the two processes, that, in
diflusion, the different substances are only mixed together and the
mixture is not homogeneous, whereas in electrolysis they are chemi-
cally combined and the eleetrolyte is homogeneous. In diffusion

Mz 2Rl it
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the determining cause of the motion of a substance in a given
direction is a diminution of the quantity of that substance per
unit of volume in that direction, whereas in electrolysis the motion
of cach ion is due to the clectromotive foree acting on the charged
molecules.

R56.] Clausius*, who has bestowed much study on the theory
of the molecular agitation of bodies, supposes that the molecules
of all bodies are in a state of constant agitation, but that in solid
bodies each molecule never passes beyond a certain distance from
its original position, whereas in fluids o molecule, after moving
a certain distance from its original position, is just as likely to
move still farther from it as to move back again. Ilence the
molecules of a fluid apparently at rest are continually changing
their positions, and passing irregularly from one part of the fluid
to another. In a ecompound fluid he supposes that not only the
compound molecules travel about in this way, but that, in the
collisions which oceur hetween the compound molecules, the mole-
cules of which they are composed are often separated and change
partners, so that the same individual atom is at one time associated
with one atom of the opposite kind, and at another time with another.
This process Clausius supposes to go on in the liquid at all times, but
when an cleetromotive foree acts on the liquid the motions of the
molecules, which before were indifferently in all directions, are now
influenced by the clectromotive force, so that the positively charged
molecules have a greater tendency towards the eathode than towards
the anode, and the negatively charged molecules have a greater
tendency to move in the opposite direction. Ilence the molecules
of the cation will during their intervals of freedom struggle towards
the cathode, but will continually be checked in their course by
pairing for a time with molecules of the anion, which are also
struggling through the crowd, but in the opposite direction.

?57.] This theory of Clausius enables us to understand how it is,
that whereas the actual decomposition of an electrolyte requires an
electromotive force of finite magnitude, the conduction of the
current in the electrolyte obeys the law of Ohm, so that every
eleetromotive foree within the electrolyte, even the fechlest, produces
a current of proportionate magnitude.

According 1o the theory of Clausius, the decomposition and
recomposition of the electrolyte is continually going on even when
there is no current, and the very feeblest electromotive force is

* Yogg. dnn. bd. ci. s, 338 (1857).
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sufficient to give this process a certain degree of dircction, and so
to produce the currents of the ions and the electrie current, which
is part of the same phenomenon. Within {he clectrolyte, however,
the ions are never set, free iy, finite quantity, and it is this liberation
of the ions which requires a finite cleetromotive force. At the
electrodes the ions accumulate, for the successive portions of the
ions, as they arrive at, the clectrodes, instead of finding molecules of
the opposite jon ready to combine with them, are forced into com-
pany with molecules of their own kind, with which they cannot,
combine.  The electromotive force required to produce this effect
is of finite magnitude, and forms an opposing electromotive foree
which produces a reversed current when other clectromotive forces
are removed.  When {his reversed eleetromotive foree, owing to
the accumulation of the lons at the electrode, is observed, the
clectrodes are said to he Polarized.

?58.] One of the hest methods of determining whother o body
18 or is not an cleet rolyte is to place it between platinam electrodes
and to pass a current through it for some time, and then, dis-
engaging the cleetrodes from the valtaic battery, and eonnecting
them with a galvanometer, to ohserve whether a reverse current,
due to polarization of the clectrodes, passes through the galvano-
weter.  Such a current, Leing due to accumulation of different,
substances on the two electrodes, is a proof that the substance has
heen eleetrolytically decomposed by the oviginal current from the
battery.  This method can often be applied where it js difficult,
by direct chemical me hods, to detect the presence of the products
of decomposition at the cleet rodes.  Sce Art, 271,

R59. § So far as we have gone the theory of clectrolysis appears
very safisfactory. Tt explains the clectric current, the nature of
which we do not understand, by means of the currents of the
material components of the clectrolyte, the motion of which,
though mnot visible to the eye, is easily demonstrated, It gives a
clear explanation, as Faraday has shewn, why an cleetrolyvte which
conducts in the liquid state s 4 non-conductor when solidified, for
unless the molecules can Pass from one part to another no clec-
trolytic conduction can take place, o that the substance must,
be in a liquid state, either by fusion or by solution, in order to be
a conductor,

But if we go on, and assume that the molecules of {he ions
within the electrolyte are actually charged with certain definite
ifuantities of eleetricity, positive and negative, so that the elec.
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trolytic current is simply a eurrent of conveetion, we find that this
tempting hypothesis leads us into very diffieult ground.

In the first, place, we must assume that in every clectrolyte each
molecule of the cation, as it i1s liberated at the cathode, commu-
nicates to the cathode a charge of positive cleetricity, the amount
of which is the same for every molceule, not only of that cation
but of all other cations, In the same way each molecule of the
anion when liberated, communicates {0 the anode a charge of
negative cleetricity, the numerical magnitude of which is the same
as that of the positive charge due to a molecule of a cation, hut
with sign reversed.

If, instead of a single molecule, we consider an assemblage of
molecules, constituting an electrochemical equivalent of the ion,
then the total charge of all the molecules is, as we have seen, one
unit of electricity, positive or negative,

260.] We do not as yet know how many molecules there are
in an clectrochemical equivalent, of any substance, hut the molecular
theory of chemistry, which is corroborted by many physical con-
siderations, supposes that the number of molecules in an elee-
trochemical equivalent is the same for all substanees. We may
therefore, in molecular speculations, assnme that the number of
molecules in an electrochemieal equivalent is ¥, & number unknown
at present, but which we may heveafter find means to determine *,

Each molecule, therefore, on being liberated from the state of

. . . .1 .
combination, parts with a charge whose magnitude is W and is

positive for the cation and negative for the anion.  This definite
quantity of cleetricity we shall call the molecular charge, If it
were known it would be the most natural unit of electricity.

Hitherto we have only inereased the precision of our ideas hy
exereising our imagination in tracing the electrification of molecules
and the discharge of that electrification.

The liberation of the ions and the passage of positive clectricity
from the anode and into the eathode are simultancous facts, The
ions, when liberated, are not charged with electricity, henee, when
they are in combination, {hey have the moleeular charges as above _
described.

The cleetrifieation of a moleenle, however, though casily ¢poken
of, is not so casily conceived.

We know that if' two metals are bhrought into contact at any

* Sec note to Art. 5.
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point, the rest of their surfaces will be clectrified, and if the metals
are in the form of two plates separated by a narrow interval of air,
the charge on each plate may beecome of considerable magnitude.
Something like this may be supposed to occur when the two
components of an clectrolyte are in combination. Each pair of
molecules may be supposed to touch at one point, and to have the
rest of their surface charged with clectricity due to the electro-
motive force of contact.

But to expluin the phenomenon, we ought to shew why the
charge thus produced on cach molecule is of a fixed amount, and
why, when a molecule of chlorine is combined with a molecule of
zine, the molecular charges are the same as when a molecule of
chlorine is combined with a molecule of copper, although the elee-
tromotive force hetween chlorine and zine is much greater than
that hetween chlorine and copper. If the charging of the molecules
15 the effect of the cleetromotive foree of contact, why should
electromotive forces of ditferent intensitios produce exactly equal
charges ?

Suppose, however, that we leap over this difficulty by simply
asserting the fact of the constant value of the molecular c}mrgc;
and that we call this constant molecular charge, for convenience in
description, one moleenle of electricity,

This phrase, gross as it is, and out of harmony with the rest of
this treatise, will enable us at least to state clearly what is known
about electrolysis, and to appreciate the ontstanding difficulties.

Every electrolyte must be considered as a binary compound of
its anion and its cation. The anion or the cation or both may he
compound bodies, so that a molecule of the anion or the ecation
may be formed by a number of molecules of simple bodies, A
molecule of the anion and a molecule of the cation combined to-
gether form one molecule of the electrolyte.

In order to act as an anion in an clectrolyte, the molecule which
so acts must he charged with what we have called one molecule
of negative electricity, and in order o act as a cation the molecule
must he charged with one molecule of positive electricity.

These charges are connected with the molecules only when they
are combined as anion and cation in the clectrolyte,

When the molecules are clectrolysed, they part with their charges
to the clectrodes, and appear as unelectrified hodies when set free
from combination.

If the same moleenje is capable of acting as a cation in one
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electrolyte and as an anion in another, and also of entering into
compound bodies which are not electrolytes, then we must suppose
that it receives a positive charge of electricity when it acts as a
cation, a negative charge when it acts as an anion, and that it
is without charge when it is not in an electrolyte.

Todine, for instance, acts as an anion in the iodides of the metals
and in hydriodic acid, but is said to act as a cation in the bromide
of indine.

This theory of molecular charges may serve as a method by
which we may remember a good many facts about electrolysis.
It 1s extremely improbable that when we come to understand the
true nature of electrolysis we shall retain in any form the theory of
moleeular charges, for then we shall have obtained a secure basis
on which to form a true theory of electric currents, and so hecome
independent of these provisional theories.

261.] One of the most important steps in our knowledge of
clectrolysis has been the recognition of the secondary chemical
processes which arise from the evolution of the ions at the elec-
trodes.

In many cases the substances which are found at the electrodes
arc not the actual ions of the electrolysis, but the products of the
action of these ions on the cleetrolyte.

Thus, when a solution of sulphate of soda is electrolysed by a
current which also passes through dilute sulphuric acid, equal
quantities of oxygen are given off' at the anodes, and equal quan-
tities of hydrogen at the cathodes, both in the sulphate of soda
and in the dilate acid.

But if the electrolysis is eonducted in suitable vessels, such as
U-shaped tubes or vessels with a porous diaphragm, so that the
substance surrounding each electrode can be examined scparately,
1t is found that at the anode of the sulphate of soda there is an
cquivalent of sulphuric acid as well as an cquivalent of oxygen,
and at the cathode there is an equivalent of soda as well as two
equivalents of hydrogen.

It would at first sight seem as if, aceording to the old theory
of the constitution of salts, the sulphate of soda were electrolysed
intn its eonstituents sulphuric acid and soda, while the water of the
solution is clectrolysed at the same time into oxygen and hydrogen.
But this explanation would involve the admission that the same
current which passing through dilute sulphuric acid electrolyses
one equivalent of water, when it passes through solution of sulphate
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of sada eleetrolvses one equivalent of the salt as well as one equi-
alent of the water, and this would be contrary to {he law of
eleetrachemical equivalents,

But if we suppose that the components of sulphate of soda are
not SO, and NaO but SO, and Na,~not sulphuric aeid and soda
but sulphion and sodinm—then the sulphion travels to the anode
and is set free, hut being unable to exist in a free state it hreaks
up into sulphurie acid and oxygen, one cquivalent of each, A,
the same time the sodinm is set free at the cathode, and there
decomposes the water of the solution, forming one equivalent. of
goda and two of hydrogen,

In the dilute sulphuric acid the gases colleeted at the eleetrodes
are the constituents of water, namely one volume of oxygen and
two volumes of hydrogen., There is also an increase of sulphurie
acid at the anode, but its amount. is not equal to an equivalent.

It is doubtful whether pure water is an electrolyte or not. The
greater the purity of the water, the greater the resistance to elec-
trolytic conduction. The minutest traces of forcign matter are
suflicient to produce a great diminution of the electrical yesistance
of water.  The electric resistance of water as determined by different
observers has values so different that we cannof consider it as 3
determined quantity. The purer the water the greater its resistance,
and if we could obtain really pure water it is doubiful whether it
would conduet at all,

As long as water was considered an electrolyte, and was, indecd,
taken as the type of electrolytes, there was a strong reason for
maintaining that it is a binary compound, and that two volumes
of hydrogen are chemically equivalent to one volume of oxygen,
If, however, we admit that waler 1s not, an electrolyte, we are free
to suppose that equal volumes of oxygen and of hydrogen are
chemically equivalent,

The dynamieal theory of gases leads us to suppose that in perfect,
gases equal volumes always contain an equal namber of molecules,
and that the principal part of the specifie heat, that, namely, which
depends on the motion of agitation of the molecules among each
other, is the same for equal numbers of molecules of all gases,
Henee we are led to prefer a chemical system in which equal
volumes of oxygen and of hydrogen are regarded as equivalent,
and in which water is regarded as a compound of two equivalents
of hydrogen and one of oxygen, and therefore probably not capable
of direct electrolysis,
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While electrolysis fully establishes the close relationship between
eleetrical phenomena and those of chemical combination, the fach
that every chemical compound is not an electrolyte shews that
chemical combination is a rocess of a higher order of complexity
than any purely clectrical phenomenon.  Thus the combinations of
the metals with cach other, though they are good conductors, and
their components stand at ditlerent points of the scale of electri-
fication by contact, are not, even when in a fluid state, decomposed
by the current.  Most of the combinations of the substances which
act as anions ure not conductors, and therefore are not electrolytes.
Besides these we have many compounds, containing the same com-
ponents as electrolytes, but not in equivalent proportions, and these
are also non-conductors, and therefore not clectrolytes.

On the Conservation of Energy in Electrolysis.

RGR.] Consider any voltaic cirenit consisting partly of a battery,
partly of a wire, and partly of an ¢lectrolytic cell.

During the passage of unit of clectricity through any section of
the civeuit, one electrochemienl equivalent of each of the substances
in the cells, whether voltaic or electrolytie, is clectrolysed.

The amount of mechanical energy equivalent to any given
chemical process can be ascertained by converting the whole encrgy
due to the process into heat, and then expressing the heat in
dynamical measure hy multiplying the number of thermal units by
Joule’s mechanical equivalent of heat.

Where this direet method is not applicable, if we can estimate
the heat given out by the substances taken first in the state before
the process and then in the state after the process during their
reduction to a final state, which is the same in both cases, then the
thermal equivalent of the process is the dilference of the two (uan-
titics of heat.

In the ease in which the chemical action maintaims a voltaje
circuit, Joule found that the heat developed in the voltaic cells is
less than that due to the chemical process within the cell, and that
the remainder of the heat is developed in the connecting wire, or,
when there is an cleetromagnetic engine in the circuit, part of the
heat may be accounted for by the mechanical work of the engine,

For instance, if the electrodes of the voltaic cell are first con-
nected by a short thick wire, and afterwards by a long thin wire,
the heat developed in the cell for cach grain of zine dissolved is
greater in the first case than the second, but the heat developed
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in the wire is greater in the second case than in the first. The
sum of the heat developed in the cell and in the wire for cach grain
of zine dissolved is the same in both cases. This has been esta-
blished by Joule by direct experiment.

The ratio of the heat generated in the cell to that generated
in the wire is that of the resistance of the cell to that of the wire,
s0 that if' the wire were made of sufficient. resistance nearly the
whole of the heat would be generated in the wire, and if it were
made of suflicient conducting power nearly the whole of the heat
would be gencrated in the cell,

Let the wire be made so as to have great resistance, then the
heat generated in it g equal in dynamical measure to the product;
of the quantity of electricity which is transmitted, multiplied by
the electromotive foree wnder which it is made to pass through
the wire,

263.] Now during the time in which an electrochemical equi-
valent of the substance in the coll undergoes the chemical process
which gives rise to the current, one unit of electricity passes
through the wire, Hence, the heat developed by the passage
of one unit of clectricity is in this case measured by the electro-
motive force. But this heat is that which one electrochemical
equivalent of the substance generates, whether in the cell or in the
wire, while undergoing the given chemical process.

Hence the following important theorem, first proved by Thomson
(Lhil. Mag, Dec. 1851):—

“The electromotive force of an cleetrochemical apparatus is in
absolute measure equal to the mechanical equivalent of the chemical
action on one electrochemical equivalent of the substance.’

The thermal equivalents of many chemical actions have been
determined by Andrews, Hess, Favre and Silbermann, &e., and from
these their mechanical equivalents can he deduced by multiplication
by the mechanical cquivalent of heat,

This theorem not only enables us to caleulate from purely thermal
data the electromotive force of different voltaic arrangements, and
the electromotive force required to effect electrolysis in different
cases, but affords the means of actually measuring chemieal affinity.

It has long been known that chemical affinity, or the tendency
which exists towards the going on of a certain chemicul change,
Is stronger in some cases than in others, but no proper measure
of this tendency could be made til] it was shewn that this tendency
In cerlain cases is exactly equivalent to a certain electromotive

AN . L
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force, and can therefore be measured according to the very same
principles used in the measurement of electromotive forees,

Chemical affinity being therefore, in certain cases, reduced to
the form of a measurable quantity, the whole theory of chemical
processes, of the rate at which they go on, of the displacement of
one substance by another, &e., becomes much more intelligible than
when chemical affinity was regarded as a quality swi generis, and
irreducible to numerical measurement.

When the volume of the products of electrolysis is greater than
that of the electrolyte, work is done during the clectrolysis in
overcoming the pressure. If the volume of an electrochemical
equivalent of the electrolyte is increased by a volume » when
eleetrolysed under a pressure p, then the work done during the
passage of a unit of electricity in overcoming pressure is #, and
the electromotive force required for cleetrolysis must include a
part equal to vp, which is spent in performing this mechanical
work.

If the products of electrolysis are gases which, like oxygen and
hydrogen, are much rarer than the clectrolyte, and fulfil Boyle’s
law very exactly, »p will be very nearly constant for the same
temperature, and the electromotive force required for eéleetrolysis
will not depend in any sensible degree on the pressure. IHence it
has been found impossible to check the electrolytic decomposition
of dilute sulphuric acid by confining the decomposed gases in a
small space.

When the products of electrolysis are liquid or solid the quantity
»p will increase as the pressure increnses, so that if » is positive
an increase of pressure will increase the electromotive force required
for electrolysis.

In the same way, any other kind of work done during clectro-
lysis will have an effect on the value of the electromotive force,
as, for instance, if a vertical current passes between two zine
clectrodes in a solution of sulphate of zine a greater electromotive
force will be required when the current in the solution fows
upwards than when it flows downwards, for, in the first case, it
carries zine from the lower to the upper electrode, and in the
second from the upper to the lower. The electromotive force
required for this purpose is less than the millionth part of that

of a Daniell’s cell per foot.



CHAPTER V.
ELECTROLYTIC POLARIZATION,

2647 WueN an clectric eurrent is passed through an electroly te
bounded by metal cleetrodes, the accumulation of the ions at the
clectrodes produces the phenomenon  called Polarization, which
consists in an clectromotive force acting in the opposite direction
to the current, and producing an apparent increase of the resistance.

When a continuous current is employed, the resistance appears
to increase rapidly from the commencement of the current, and
at last reaches a value nearly constant. It the form of the vessel
in which the clectrolyte is contained is changed, the resistance is
altered in the same way as a similar change of form of a metallic
conductor would alter its resistance, but an additional apparent
resistance, depending on the nature of the clectrodes, has always
to be added to the true resistance of the electrolyte.

265.] These phenomena have led some to suppose that there iy
a finile electromotive force required for a current to pass through
an electrolyte, It has been shewn, however, by the rescarches of
Lenz, Neumann, Beetz, Wicdemann *, Paalzow +, and recently by
those of MM. I*. Kohlrausch and W. A. Nippoldt$, that the con-
duction in the electrolyte itself obeys Ohm’s Law with the same
precision as in metallie conductors, and that the apparent resistance
at the bounding surface of the electrolyte and the electrodes i
entirely due to polarization,

266.] The phenomenon ealled polarization manifests itself in
the case of u continunus current by a diminution in the current,
indicating a foree opposed to the current. Resistance is also per-
ceived as a furee opposed to the current, but we can distinguish

¢ CGalranismus, b, i, t Berlin Monatsheriche, July, 1868,
T Pogy Ann. Wi, exxxviii. s, 986 (October, 1869).
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hetween the two phenomena by instantancously removing or re-
versing the eleetromotive foree.

"The resisting foree is always opposite in direction to the current,
and the external electromotive foree required to overcome it is
proportional to the strength of the current, and changes its direc-
tion when the direction of the current is changed.  If the external
electromotive foree hecomes zero the current simply stops.

The clectromotive force due to polarization, on the other hand,
is in a fixed direction, opposed to the current which produced it.
If the electromotive foree which produced the current is removed,
the polarization produces a eurrent in the opposite direction.

The difference between the two phenomena may be compared
with the difference between foreing a current of water through
a long capillary tube, and forcing water through a tube of moderate
length up into a cistern. In the first case if we remove the pressure
which produces the flow the current will simply stop.  In the
sccond ease, if we remove the pressure the water will hegin to How
down again from the cistern.

To malke the mechanical illustration more complete, we have only
to suppose that the cistern is of moderate depth, so that when a
certain amount of water is raised into it, it begins to overflow.
This will represent the fact that the total electromotive foree due
to polarization hus a maximum limit.

267.] The cause of polarization appears to be the existence at
the eleetrodes of the products of the clectrolytic decomposition of
the fluid between them. The surfaces of the electrodes are thus
rendered electrically different, and an eleetromotive force between
them is called into action, the direction of which is opposite to that
of the current which caused the polarization.

The ions, which by their presence at the clectrodes produce the
phenomena of polarization, are not in a perfectly free state, Lut
are in a condition in which they adhere to the surface of the
clectrodes with considerable foree.

The electromotive force due to polarization depends upon the
density with which the electrode is covered with the ion, but it
15 not proportional to this density, for the electromotive force does
not increase so rapidly as this density.

This deposit of the ion is constantly tending to hecome free,
and cither to diffuse into the liquid, to escape as a gas, or to he
precipitated as a solid.

The rate of this dissipation of the polarization is execedingly
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swall for slight degrees of polarization, and exceedingly rapid near
the limiting value of polarization,

268.] We have seen, Art, 262, that the electromotive force acting
in any electrolytic process is numerically equal to the mechauical
equivalent of the result of that process on one electrochemical
enuivalent of the substance. If the process involves u diminution
of the intrinsic encrgy of the substances which take part in it,
as in the voltaic cell, then the electromotive foree is in the direction
of the current. If the process involves an inerease of the intrinsie
energy of the substances, as in the case of the electrolytic cell,
the electromotive force is in the direction opposite to that of the
carrent, and this clectromotive foree is called polarization, 4

In the case of a steady current in which electrolysis goes on
continuously, and the ions are separated in a free state at the
electrodes, we have only by a suitable proeess to measure the
intrinsic energy of the separated ions, and compare it with that
of the eleetrolyte in order to calculate the electromotive force
required for the clectrolysis. This will give the maximum polari-
zation, :

But during the first instants of the process of electrolysis the ,
ions when deposited at {he clectrodes are not in a free state, and
their intrinsic energy is less than their cnergy in a free stale,
though greater than their energy when combined in the electrolyte,
In fact, the ion in contact with the electrode is in a state which i
when the deposit is very thin may be compared with that of f
chemical combination with the clectrode, hut as the deposit in- '3

creases in density, the succeeding portions are no longer so in-
timately combined with the electrode, but simply adhere to it, and
at last the deposit, if gaseous, escapes in bubbles, if liquid, diffuses
through the eleetrolyte, and if solid, forms a precipitate.

In studying polarization we have therefore to consider

(1) The superficial density of the deposit, which we may call
o.  This quantity o represents the number of electrochemical
equivalents of the ion deposited on unit of area. Since each
electrochemical equivalent deposited corresponds to one unit of
clectricity transmitted by the current, we may consider ¢ as re-
presenting cither a surface-density of matter or a surface-density of
electricity,

(2) The electromotive force of polarization, which we may call p.
This quantity » is the difference between the electric potentials
of the two eclectrodes when the current through the electrolyte
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is so fecble that the proper resistance of the clectrolyte makes no
sensible difference hetween these potentials,

The electromotive foree p at any instant is numerically equal
to the mechanieal equivalent of the eleetrolytic process going on at
that instant which corresponds to one clectrochemical equivalent of
the cleetrolyte.  This electrolytic process, it must be remembered,
consists in the deposit of the ions on the cleclrodes, and the stato
in which they are deposited depends on the actual state of ihe
surfuce of the clectrodes, which may be modified by previous
deposits,

ITence the electromotive force at any instant depends on the
previous history of the clectrode. It is, speaking very roughly,
a function of o, the density of the deposit, such that 2 = 0 when
o =0, hut » approaches a limiting value much sooner than ¢ does,
The statement, however, that » is a function of ¢ cannot be
constdered accurate. It would be more correet to say that p is
a function of the chemical state of the superficial layer of the
deposit, and that this state depends on the density of the deposit
according to some law involving the time.

269.] (8) The third thing we must take into account is the
dissipation of the polarization. The polarization when left to itself
diminishes at a rate depending partly on the intensity of the
polarization or the density of the deposit, and partly on the nature
of the surrounding medium, and the chemical, mechanieal, or thermal
action to which the surface of the electrode is exposed.

If wé determine a time 7' such that at the rate at which
the deposit is dissipated, the whole deposit would be removed in
a time 7, we may call 7' the modulus of the time of dissipation.
When the density of the deposit is very small, 7' is very large,
and may be reckoned by days or months, When the density of
the deposit approaches its limiting value 7’ diminishes very rapidly,
and is probably a minute fraction of a second. In fact, the rate
of dissipation increases so rapidly that when the strength of the
current is maintained constant, the separated gas, instead of con-
tributing to increase the density of the deposit, escapes in bulbles
as fast as it is formed.

R70.] There is therefore a great difference hetween the state of
polarization of the electrodes of an electrolytic cell when the polari-
zation is feeble, and when it is at its maximum value. For stance,
if a number of electrolytie eclls of dilute sulphuric acid with
platinum electrodes are arranged in series, and if a small zlectro-

\VOL. L. Y
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motive force, such as that of one: Daniell’s cell, be made to acl,
on the cireuit, the electromotive force wil] produce a current of
exceedingly  short, duration, for after very short time the clee-
tromotive force arising from the polarization of the cell will balance
that of the Danicll's eoll.

The dissipation will be very smadl in the case of so foohle g sfate
of polarization, and it will take place by o very slow absorption
of the gases and diffusion through the liguid,  The rafe of thig
dissipation is indicatod by the exceedingly foeble current which
still continues to flow without any visible separation of aases,

If we neglect this dissipation for the short {ime during which
the state of polarization s seboup, and if we eall @ the total
quantity of cleetricity which iy transmitted by the current during
this time, then if f ig the area of one of the electrodes, and o
the density of the deposit, supposed uniform,

Q = Ao,

If we now disconneet the eleef rodes of the eleetrolytic apparatus
from the Daniell’s cell, and connect, them with o galvanomeler
apable of measuring the whole discharge through it, a quantity
of electricity nearly equal 1o @ will be discharged as the polari-
zation disappears.

271.] Henee we may compare the action of this apparatus, which
is a form of Ritter's Secondary Pile, with that of o Leyden jar,

Both the secondary pile asd the Leyden jar are apable of leing
charged with a certain amount, of electricity, and of being after-
wards discharged.  During the discharge a quantity of cleetricity
nearly equal to the chirge passes in the opposite direetion.  The
difference between the charge and the discharge arises partly from
dissipation, a Process which in the cuse of small charges i very
slow, but which, when the charge exceeds a certain limit, bhecomes
exceedingly rapid,  Another part of the diflerence hetween the charge
and the discharge arises from the fact that after the clectrodes
have been connected for a time suflicient to produce an apparently
complete discharge, so that the current has comypletely disappeared,
if we separate the electrodes for a time, and afterwards connect
them, we obtain a second discharge in the same dircetion as the
original discharge. This js cialled the residual discharge, and s g
phenomenon of the Leyden jar as well as of (he secondary pile,

The secondary pile may therefore he compared in several respeets
toa Leyden jar.  There are, however, certain mmportant diflerences.
The charge of o Leyden jar is very exactly proportional to ihe
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clectromotive force of the charge, that is, to the difference of

potentials of the two surfaces, and the charge corresponding to unit
ol electromative force is ealled the capacity of the jar, a constant
quantity.  The corresponding quantity, which may be called the
capacity of the secondary pile, increases when the electromotive
foree inereases.

The capacity of the jar depends on the area of the opposed
surfaces, on the distance between them, and on the nature of the
substance between them, but not on the nature of the metallic
surfaces themselves.  The capacity of the secondary pile depends
on the area of the surfaces of the eleetrodes, but not on the distance
between them, and it depends on the nature of the surface of the
eleetrodes, as well as on that of the uid between them.  'The
maximum difference of the potentials of the clectrodes in each
element of a secondary pile is very small compared with the maxi-
mum diflerence of the potentials of those of a charged Leyden jar,
so that in order to obtain much electromotive foree a pile of many
clements must be used.

On the other hand, the superficial density of the charge in the
scecondary pile is immensely greater than the utmost superticial
density of the charge which can be accumulated on the surfices
of a Leyden jar, insomuch that Mr. C. I' Varley %, in describing
the construction of a condenser of great capacity, recommends a
eeries of gold or platinum plates immersed in dilute acid as prefer-
able in point of cheapness to induction plates of tinfoil separated
by insulating material.

The form in which the energy of a Levden jar is stored up
1s the state of constraint of the dielectric between the conducting
surfaces, a state which 1 have already deseribed under the name
of clectric polarization, pointing out those phenomena attending
this state which are at present known, and indicating the im-
perfect state of our knowledge of what really takes place. See
Arts. 62,111,

The form in which the energy of the secondary pile is stored
up is the chemical condition of the material stratum at the surface
of the electrodes, consisting of the ions of the electrolyte and the
substance of the electrodes in a relation varying from chemieal
combination to superficial condensation, mechanical adherence, or
simple juxtaposition.

The seat of this cnergy is close to the surfaces of the electrodes,

* Specifieation of C. F. Varley, © Electric Telegraphs, &e.,’” Jan. 1860,
Y 2
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and not throughout the substance of the electrolyte, and the form
in which it exists may be called clectrolytic polarization.

After studying the sccondary pile in connexion with the Leyden
Jar, the student should again compare the volfajc battery with
some form of the electrical machine, such as that deseribed in
Art. 211,

Mr. Varley has lately # found that the capacity of one square
inch is from 175 1o 5.2 microfarads and upwards for platinum
plates in dilute sulphurie acid, and that the capaeity increases with
the electromotive force, being about 175 for 0.02 of a Daniell’s
cell, and 542 for 1.6 Daniell’s eells.

But the comparison hetween the Leyden jar and the secondary
pile may be carried still farther, as in the following experiment,
due to Bufl+. Tt js only when the glass of the jar is cold that
it is capable of retaining a charge. At temperature below 100°C
the glass becomes a conductor,  If a test-tube containing mereury
is placed in a vessel of mereary, and if a pair of electrodes are
connected, one with the inner and the other with the outer portion
of mereury, the arrangement constitutes g Leyden jar which will
hold a charge at ordinary temperatures. If {le electrodes are con-
nected with those of a voltaie battery, no current will Pass as long
as the glass is cold, but if the apparatus is gradually heated a
current will begin to pass, and will increase rapidly in intensity ag
the temperature rises, though the glass remains apparently as hard
as ever,

This current is manifestly electrolytic, for if the clectrodes are
disconnected from the battery, and connected with a galvanometer,
a considerable reverse current passes, due to polarization of the
surfaces of the glass,

I, while the battery is in action the apparatus is cooled, {he
current is stopped by the cold glass as Lefore, hut the polarization
of the surfaces remains, The mereury may be removed, the surfuces
may be washed with nijtrie acid and with water, and fres) mereury
introduced, If the apparatus is then heated, the current of polar-
ization appears as soon as the glass is sufliciently warm to conducet it,

We may therefore regard glass at 100°C, though apparently a
solid body, as an clectrolyte, and there s considerable reason
to believe that in most Instances in which g dieleetric has a
slight degree of conductivity the conduction is electrolytic, The

* Proc. R. 8., Jan, 12, 1871.
T dundlen der Chemie und Lharmacie, b, xe. 257 (1854).
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existence of polarization may be regarded as conclusive evidence of
clectrolysis, and if the conductivity of a substance increases as the
temperature rises, we have good grounds for suspecting that it is
electrolytic,

On Coustant I'vltaic Flements.

R72.] When a series of experiments is made with a voltaic
battery in which polarization occurs, the polarization diminishes
during the time that the current is not flowing, so that when
it begins to flow again the current is stronger than after it has
flowed for some time, If, on the other hand, the resistance of the
cireait is diminished by allowing the current to flow through a
short shunt, then, when the cwrrent is again made to flow through
the ordinary circuit, it is at first weaker than its normal strength
on account of the great polarization produced by the use of the
short cireuit.

To get rid of these irregularitics in the current, which are
exceedingly troublesome in experiments involving exact mcasure-
ments, it is necessary to get rid of the polarization, or at least
to reduce it as much as possible,

It does not appear that there is much polarization at the surface
of the zine plate when immersed in a solution of sulphate of zine
or in dilute sulphurie acid. The principal seat of polarization is
at the surface of the negative metal. When the fluid in which
the negative metal is immersed is dilute sulphurie acid, it is seen
to hecome covered with bubbles of hydrogen gas, arising from the
clectrolytic decomposition of the fluid.  Of course these bubbles,
by preventing the fluid from touching the metal, diminish the
surface of contact and inerease the resistance of the circuit. But
besides the visible bubbles it is certain that there is a thin coating
of hydrogen, probably not in a free state, adhering to the metal,
and as we bhave seen that this coating is able to produce an elec-
tromotive force in the reverse direction, it must necessarily diminish
the electromotive force of the battery.

Various plans have been adopted to get rid of this couting of
hydrogen, Tt may be diminished to some extent by mechanical
means, such as stirring the liquid, or rubbing the surface of the
negative plate.  In Smee’s battery the negative plates are vertical,
and covered with fincly divided platinum from which the bhubbles of
hydrogen casily escape, and in their ascent produce a current of
liquid which helps to brush off’ other bubbles as they are formed,

A far more eflicacious method, however, is to employ chemical
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means.  These are of two kinds, Tn the batteries of Grove and
Bunsen the negative plate is immersd i a fluid rieh in oxygen,
and the hydrogen, instead of forming a conting on {he plate,
combines with this substance. [n Grove’s battery {he plate is
of platinum immersed in strong nitric acid.  Tn Bunsen’s first
battery it is of carbon in the same acid.  Chromie acid is also used
for the same purpose, and has the advantage of being free from the
acid fumes produced by the reduction of nitrie acid,

A different mode of getting rid of the hydrogen is by using
copper as the negative metal, and covering the surface with a coal
of oxide. This, however, rapidly disappears when it is used as
the negative electrode. o renew it Joule has proposed to make
the copper plates in the form of disks, half immersed in the liquid,
and to rotate them slowly, so that the air muy act on the parts
exposed {o it in tumn,

The other method iy by using as the liquid an clectrolyte, the
cation of which is a metal highly negative to zine,

In Danicll’s battery a copper plate is immersed in a saturated
solution of sulphate of copper.  When the current flows through
the solution from the zine to the copper no hydrogen appears on
the copper plate, hut copper is deposited on it.  When the solution
is saturated, and the current is not too strong, the copper appears
to act as a true cation, the anion SO, travelling towards the zine.

When these conditions are not fulfilled hydrogen is evolved a
the cathode, hut immediately acts on the solution, throwing down
copper, and uniting with SO, to form oil of vitriol.  When this
is the case, the sulphate of copper next the copper plate is replaced
by oil of vitriol, the liguid becomes colourless, and polarization by
hydrogen gas again takes place.  The copper deposited in this way
is of a looser and more frinble structure than that deposited by true
clectrolysis,

To ensure that the liquid in contact with the copper shall he
saturated with sulphate of copper, erystals of this substance must
be placed in the Tiquid close to the copper, so that when the solution
is made weak by the deposition of {he copper, more of the crystals
may be dissolved.

We have seen that it is necessary that the liquid next the copper
should he saturated with sulphate of copper. Tt is still more
necessary that the liquid in whicl the zine is immersed should be
free from sulphate of copper. I any of this salt makes its way
to the surface of the zine i is reduced, and copper is deposited



272.] THOMSON’S FORM 0¥ DANIELL'S CELL. 327

on the zine.  The zine, copper, and fluid then form a little circuit
in which rapid clectrolytic action goes on, and ‘the zine is eaten
away by an action which contributes nothing to the useful cflect
of the battery.

To prevent this, the zine is immersed cither in dilute sulphurie
acid or in a solution of sulphate of zine, and to prevent the solution
of sulphate of copper from mixing with this liquid, the two liquids
are separated by a division consisting of bladder or porous earthen-
ware, which allows electrolysis to take place throngh it, but
effectually prevents mixture of the fluids by visible currents.

In some batteries sawdust is used to prevent currents. The
experiments of Graham, however, shew that the process of diffusion
goes on nearly as rapidly when two liquids are separated by a
division of this kind as when they are in direct contact, provided
there are no visible currents, and it is probable that if a septum
is employed which diminishes the diffusion, it will increase in
exactly the same ratio the resistance of the element, hecause elec-
trolytic conduction is a process the mathematical laws of which
have the same form as those of diffusion, and whatever interferes
with one must interfere equally with the other. The only differ-
ence is that diflusion is always going on, while the current flows
only when the battery is in action.

In all forms of Daniell’s battery the final result is that the
sulphate of copper finds its way to the zine and spoils the battery.
To retard this result indefinitely, Sir W. Thomson * has constructed
Daniell’s battery in the follo&ing form.

Ly
=i ELECTRODES

ZINC

Zn 50e

LEVEL or SIPHON

27504y Ciu 504

COPAPLR

Im each cell the eapper plate is placed horizontally at the hottom
¢ Proc. RN, Jan, 19, 1871,

~———— e
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and a saturated solution of sulphate of zine is poured over it.  The
zine is in the form of o grating and is placed horizontally near the
surface of the solution., A glass tube ig placed vertieally in the
solution with its lower end Just above the surface of the copper
plate.  Crystals of sulphate of copper are dropped down this tube,
and, dissolving in the liquid, form a solution of greater density
than that of sulphate of zine alone, so that it cannot get to the
zine except by diffusion, To retard this process of diftusion, a
siphon, consisting of a glass tube stuffed with cotton wick, is
placed with one extremity midway hetween {lhe zine and copper,
and the other in a vessel outside the cell, so that the liquid s
very slowly drawn ofl near {he middle of its depth. To supply
its place, water, or a woak solution of sulphate of zine, is added
above when required.  Tn this way the greater part of the sulphate
of copper rising through the liguid by diffusion is drawn off by the
siphon before it reaches the zine, and the zine js surrounded by
liquid nearly free from sulphate of copper, and having a very slow
downward motion in the eell, which still further retards the upward
motion of the sulphate of copper. During the action of the battery
copper is deposited on the copper plate, and SOy travels slowly
through the liquid to the zine with which it combines, forming
sulphate of zine. Thus the liquid at the hottom hecomes less dense
by the deposition of the copper, and the liguid at, the top becomes
more dense by the addition of tho zine. To prevent this action
from changing the order of density of the strata, and so producing
instability and visihle currents in the wessel, eare must ho taken to
keep the tube well supplied with arystals of sulphate of copper,
and to feed the cell above with o solution of sulphate of zine suffi-
ciently dilute {o he lighter than any other stratum of the liquid
in the cell.

Daniell’s battery is by no means the most powerful in common
use.  The cleetromotive foree of Grove’s cell ig 192,000,000, of
Daniell’s 107,900,000 and that of Bunsen’y 188,000,000,

The resistance of Daniell’s coll is in general greater than that of
Grove's or Bunsen’s of the sume size,

These defeets, however, are moro than counterhalanced in all
cases where exact measurements are required, by the fact that
Danicll’s cell exceeds every other known arrangement in- constancy
of electromotive force. Tt hag also the advantage of continuing
in working order for g long time, and of emitting no gas,




CHAPTER VI.
LINEAR ELECTRIC CURRENTS,

O Systems of Lincar Conduclors.

R73.] ANy conductor may be treated as a linear conductor if il
is arranged so that the current must always pass in the same manner
between two portions of its surface which are called its clectrodes.
For instance, a mass of metal of any form the surface of which is
entirely covered with insulating material except at two places, at
which the exposed surface of the conductor is in metallic contact
with electrodes formed of a perfeetly conducting material, may be
treated as a linear conductor.  For if the current be made to enter
at one of these electrodes and escape at the other the lines of flow
will be determinate, and the relation between electromotive foree,
current and resistance will be expressed by Ohm’s Law, for the
current in every purt of the mass will be a linear function of /.
But if there be more possible electrodes than two, the conductor
may have more than one independent current through it, and these
may not be conjugate to cach other. Sce Art. 282.

Ohi’s L,

274.] Let Z be the electromotive force in a lincar conductor
from the electrode 4; to the electrode d,. (See Art. 69.) Let
C be the strength of the clectric current along the conduetor, that
is to say, let C units of electricity pass across every section in
the direction A, 4, in unit of time, and let 2 be the resistance of
the conductor, then the expression of Ohm’s Law is

I = CR. (1

Lincar Copductors arranged in Series.

R75.] Let 4,, A, be the electrodes of the first conductor and let
the second conductor be placed with one of its clectrodes in contact
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with 4,, so that the sccond conductor has for its electrodes Ay, Ay,
The clectrodes of the third conductor may he denoted by A,
and .,
Let the clectromotive force along each of these conductors he
denoted by £, Fyyy Fyy, and so on for the other conductors,
Let the resistance of the conductors he
Ry Ry, Ry, &e.
Then, since the conductors are arranged in series so that the same
carrent ¢ flows through cach, we have by Ohm’s Law,
L, = CR,, Ly = Cly, by = Chy,. (2)
If £is the resultant clectromotive force, and 2 the resultant
resistance of the system, we must have by Ohm’s Law,
I=CR, (3)
Now b= b+ Fy+ L, (1)
the sum of the separate electromotive forees,
= C(Ry+ By + 1) by equations (2).
Comparing this result with (3), we find
A= Rig+ Ry 4+ Ry, (5)
Or, the resistance of u serics of conduclors is the sum of the resistances
of the conductors luken separately.

Lolential at any Point of the Series.

Let 4 and € be the clectrodes of the series, /3 a point hetween
them, 4, ¢, and 4 the potentials of these points respectively.,  Let
£2y be the resistance of the part from 4 to B, X, that of the part
from 13 to €, and 2 that of the whole from . to ¢ then, since

a—b=RC bt = R,C, and a—¢ = RC,

the potential at £ is , ,
b = /I:{l -+ ]«l(' , ((5)

Vi
which determines the potential at £ when those at  and ¢ are
given,
Resistance of a Multiple Conductor.
R76.] Let a number of conductors ABZ, ACZ, ADZ be arranged
side by side with their extremities in contact with the same two
points A4 and Z. They arc then said to Tbe arranged in multiple

are.
Let the resistances of these conductors be 2\, R,, R, respect-
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ively, and the currents (), C,, (,, and let the resistance of the
multiple conductor be R, and the total current C. Then, since the
potentials at ./ and 7 are the same for all the conductors, they have
the same difference, which we may call E.  We then have

E: (71 ]?1 = 02]?_,'= 031113 = Cli),

- ¢= Gt
I 1t 1 (7)
whence ® TR + R, + R,

Or, the reciprocal of the resistance of a multiple conductor is the sum
of the reciprocals of the component conductors.

If we call the reciprocal of the resistance of a conductor the
conductivity of the conductor, then we may say that ke con-
ductivily of a multiple conductor is the sum of the conduclivitios of
the component condnctors.

Current in any Branch of a Multiple Conductor.

From the equations of the preceding article, it appears that if
C; is the current in any branch of the multiple conductor, and
1i; the resistance of that branch,

V]

(41 = CY)SI b (8)

where € is the total current, and I2 is the resistance of the multiple
conductor as previously determined.

Longitudinal Resistance of Conductors of Uniform Section.

R77.7] Let the resistance of a cube of a given material to a current
parallel to one of its edges be p, the side of the cube being unit of
length, p is called the specific resistance of that material for unit
of volume.’

Congider next a prismatic conductor of the same material whose
length is /, and whose section is unity. This is equivalent to /
cubes arranged in series. The resistance of the conductor is there-
fore Ip.

Finally, consider a conductor of length Z and uniform section s.
This is equivalent to s conductors similar to the last arranged in
multiple arc. The resistance of this conductor is therefore

B ‘p

=
8

When we know the resistance of a uniform wire we can determine
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the specific resistance of the material of which it is made if we can
measure its length and its section,

The sectional arca of small wires i1s most aceurately determined
by ealenlation from the length, weight, and specific gravity of the
specimen. The determination of the specific gravity is sometimes
inconvenient, and in such cases the resistance of a wire of unit
length and unit mass is used as the “specific resistance per unit of
weight,’

If 7 is this resistance, / the Iength, and i the mass of a wire, then

Il’ = lJ I.-

"

On the Dimensions of the Quantitics involved in these Fquations.

R78.1 The resistance of a conductor is the ratio of the clectro-
motive force acting on it to the current produced.  The conduct-
ivity of the conductor is the reciprocal of this quantity, or in
other words, the ratio of the current to the electromotive foree
producing it,

Now we know that in the electrostatic system of measurement
the ratio of a quantity of electricity to the potential of the econ-
ductor on which it s spread is the ecapacity of the conduetor, and
is measured by a line,  If the conductor is a sphere placed in an
unlimited field, this line is the radius of the sphere.  The ratio
of a quantity of electricity to an clectromotive force i therefore a
line, but the ratio of o quantity of electricity to a current is the
time during which the eurrent Hows to transmit that quantity,
Hence the ratio of a current to an electromotive force is that of g
line to a time, or in other words, it is a velocity:,

The fact that the conduetivity of a conductor is expressed in the
electrostatic system of measurement by a veloeity may be verified
by supposing a sphere of radius # charged to potential /', and then
connected with the eart), by the given conductor. Tt the sphere
contract, so that as the electricity escapes through the conductor
the potential of the sphere is always kept equal to /7 Then the

charge on the sphere is r/ at, any instant, and the current is

74 . . - Loy
o (#1"), but, since /° ig constant, the current is Jt F, and the

electromotive force through the conductor is /-
The conductivity of the conductor is the ratio of the current to

. lr . . . .
the eleetromotive foree, or {/;—, that is, the veloeity with which the
(.
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radius of the sphere must diminish in order to maintain the potential
constant when the charge is allowed to pass to earth through the
conductor.

In the clectrostatic system, therefore, the conduetivity of a con-
ductor is a velocity, and of the dimensions [L21].

The resistance of the conductor is therefore of the dimensions
[Z=7.

The specific resistance per unit of volume is of the dimension of
[7], and the specific conductivity per unit of volume is of the
dimension of [71].

The numerical magnitude of these coeflicients depends only on
the unit of time, which is the same in different countries.

The specific resistance per unit of weight is of the dimensions
[L-37).

R79.] We shall afterwards find that in the clectromagnetie
system of measurement the resistance of a conductor is expressed
by a velocity, so that in this system the dimensions of the resist-
ance of a conductor are [ L71].

The conductivity of the conductor is of course the reciprocal of
this.

The specifie resistance per unit of volume in this system is of the
dimensions [Z*7'71], and the specific resistance per unit of weight
is of the dimensions [Z7171 /]

On Linear Systems of Conductors in yeneral.

280.] The most general casc of a linear system is that of «
points, A, d,,... d,, connceted together in pairs by du(n—1)
linear conductors. Let the conductivity (or reciprocal of the re-
sistance) of that conductor which connects any pair of points, say
4, and 4, be called K, and let the current from A,t0 4, be C,,.
Let ) and P he the electric potentials at the points 4, and 4,
respectively, and let the internal clectromotive foree, if there be
any, along the conductor from Ad,tod, be £, .

The current from A, to 4, is, by Ohm’s Law,

C’l") = ]\’l"l (])11—Pv+]£pu)‘ (1)

Among these quantities we have the following scts of relations :

The conductivity of a conductor is the same in cither direction,

or Ky = K. (2)
The clectromotive force and the current are directed quantities ,
so that L, =-L, wmd C, =— C,p (3)
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Let 2y, P,,...P, be the potentials at Ay, ,, ... 4, respectively,
and let @, @,, ... Q, be the quantities of eleetricity which enter
the system in unit of time at cach of these points respectively.
These are necessarily subject 10 the condition of ‘continuity’

Qe+ @y +Qu =0, (1)
since clectricity can neither be indefinitely accumulated nor pro-
duced within the system.

The condition of ¢ continuity’ at any point 4, is
Q= Cu+Cute +C,,. (5)
Substituting the values of the currents in terms of equation
(1), this becomes
@ = (K + Kyt &e.+ K,,) P, ~(K,, P, + K,, P, 4 &e. + K, P,)
+ (K, v &e. + K, 1), (6)
The symbol A, does not oceur in this equation.  Let us therefore
give it the value
Kpp =—(R 4+ K, +&. +K,); (7
that is, let K, be a quantity equal and opposite to the sum of
all the conductivitics of the conductors which meet in A, We
may then write the condition of continuity for the point ,,

Ky Pr4+ Ky Pyt &+ K, P+ & + K, P,

pn
= Ky L+ &e. +K,,E,,~Q,. (8)

By substituting 1, 2, &e. 2 for p in this equation we shall obtain
# cquations of the same kind from which to determine the 2
potentials P, P,, &ec., P,.

Since, however, there is a necessary condition, (4), connecting the
values of @, there will be only n—1 independent equations.  These
will be sufficient to determine the differences of the potentials of the
points, but not to determine the absolute potential of any. This,
however, is not required to caleulate the currents in the system.

If we denote by D the determinant
]"m -Kl": ------ ]\'l(vl—l)!
D = ]\’21) Kez: """" ]{-.!(n-l)l 9)

I{(n—l)l’ ]\V('l~l)2’ v ']"(lu—l)('l—l);

and by D,,, the minor of K,,, we find for the value of P, -P,,

(P,—P) D= (KB, +&c.— Q) D, +(Ky By + &e.— @)D, +&e.
+ ([\’ql ]”Yq] + &C. + Kqu ];qn—' Qq) -I)pq + &C. (l 0)

In the same way the excess of the potential of any other point,
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say 4,, over that of A, may be determined. We may then de-
termine the current between 4, and 4, from equation (1), and so
solve the problem completely.

281.] We shall now demonstrate a reciprocal property of any
two conductors of the system, answering to the reciprocal property
we have already demonstrated for statieul electricity in Art. 88,

. NP .o . D
The coeflicient, of @, in the expression for P, is ﬁ That of Q,
. . y o Dy, ’
in the expression for P, is 7

Now D, differs from D,, only by the substitution of the symhols
such as A, for K,,. But, by cquation (2), these two symbols are
equal, since the conduetivity of a conductor is the same both ways,
Hencee D, = D,. (11)

It follows from this that the part of the potential at , arising
from the introduction of a unit current at A, s equal to the part of
the potentiul at A, arising from the introduction of g unit current
at 4,

We may deduce from this a proposition of 2 more practical form,

Let 4, B, G, D be any four points of the system, and let the
effect of a current @, made to enter the system at . and leave it
at B3, be to make the potential at ¢ exceed that at ) by 2. Then,
if an equal current @ be made to enter the system at € and leave
it at D, the potential at . will excoed that at B by the same
quantity P,

We may also establish a property of a similar kind relating to
the effect of the internal electromotive foree L,,, acting along the
conductor which joins the points A, and .4 in producing an ex-
ternal electromotive force on the conductor from A, to d,, that is
to say, a diflerence of potentials P,—P,. Tor since

Eru = —-]y’",

the part of the value of P, which depends on this clectromotive
foree 15 1 : ,
D (]Jpr—[)pq) En:
and the part of the value of P,is
1 R
:Z) (])qr—‘l)qn) ]brl .
Therefore the coefficient of %, in the value of L,—P is
| ;
- D+ D=D,,—D,}. (12)

This is identical with the coefficient of £, in the value of P, — P2,
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If therefore an eclectromotive force % he introduced, acting in the
conductor from A to B, and if this causes the potential at C to
exceed that at D Ly P, then the same electromotive force J intro-
duced into the conduetor from € to 1) will cause the potential at o
to exceed that at 7 by the same quantity 2,

The clectromotive force 72 may he that of a voltaic battery intro-
duced between the points named, care being taken that the resist-
ance of the conduetor is the same before and after the introduction
of the battery.

282 If ]),,,+]),l,-.]),,,—-1)q, =0, (13)
the conductor A, Ay 18 said to be conjugate to A, 4,, and we have
seen that this relation is reciprocal.

An clectromotive force in one of two conjugate conductors pro-
duces no cleetromotive force or current along the other. We shall
find the practical application of this principle in the case of the
clectrie bridge,

The theory of conjugate conduetors has bheen investigated by
Kirchhoff, who has stated the conditions of a linear system in the
following manner, in which the consideration of the potential is
avoided,

(1) (Condition of ¢ continuity.’y At any point of the system the
sum of all the currents which flow towards that point is zero,

(2) In any complete circuit formed by the conduetors the sum
of the electromotive forees taken round the cireuit is equal to the
sum of the products of the current in each conductor multiplied by
the resistance of that conductor.

We obtain this result by adding equations of the form (1) for the
complete circuit, when the potentials necessaril y disappcear.

Ileat Generated in the System.

283.] The mechanieal equivalent of the quantity of heat gene-
rated in a conductor whose resistance is &2 by a current € in unit of
time is, by Art. 242, JIT = Ree. (1)

We have therefore to determine the sum of such quantities as
£C* for all the conductors of the system.

For the conductor from 4, to A, the conductivity is K,,, and the
where K, R, =1 (15)

resistunce &
Py Py

hq2
The current in this conductor is, according to Ohm’s Law,

qw = ]\'P'I (])p—])v)' (]6)




284.] GENERATION OF HEAT. 337

We shall suppose, however, that the value of the current is not
that given by Ohm’s Law, but X,,, where
Xy = Cout Y (17)
To determine the heat generated in the system we have to find
the sum of all the quantities of the form

> Y2
R, X

e

or  JH=X{R, C? + 20,0, Yo+ R, 2, ). (18)

Giving C,, its value, and remembering the relation between X,
and %, , this becomes

X (])p— l/) (qu + 21’1:0) + pra Yzm' (19)

Now since both €' and X must satisfy the condition of continuity

at 4,, we have @y = Cpy+ Cpp + &e. + Cps (20)

Ql' = A;'l +'X')'2+&c'+4anJ (21)

therefore 0= F,+¥,+&e. + r,,. (22)

Adding together therefore all the terms of (19), we find
E(#py X%y) = 3P, Q,+3 2tp ¥y, (23)

Now since 7 is always positive and ¥ is essentiall ¥y positive, the
last term of this equation must e essentially positive, IHence the
first term is a minimum when ¥ is zero in every conductor, that is,
when the current in every conductor is that given by Ohm’s Law.

Hence the following theorem :

284.] In any system of conductors in which there are no internal
electromotive forces the heat generated Dy currents distributed in
accordance with Ohm’s Law is less than if the currents had been
distributed in any other manner consistent with the actual con-
ditions of supply and outflow of the current,

The heat actually generated when Ohm’s Law is fulfilled is
mechanically equivalent to 22,Q, that is, to the sum of the
products of the quantities of electricity supplied at the different
external electrodes, each multiplied by the potential at which it is
supplied.

VOTL.. 1, 7




CHAPTER VILI.
CONDUCTION IN THREE DIMENSIONS.

Notation of Elcetric Currents,

285.] At any point let an element, of area dS be taken normal
to the axis of 2, and let Q units of electricity pass across this area
from the negative to the positive side in unit of time, then, if

78 becomes ultimately equal to « when .8 is indefinitely diminished,

« s said to he the Component of the clectric current in the direction
of x at the given point.
In the same way we may determine » and w0, the components of
the current in the directions of 4 and z respeetively,
286.] To determine the component of the current in any other
direction OZ through the given point O,
Let 7, m, n be the direction-cosines of OR, then cutting off from
the axes of 2, y, = portions equal to
A and ~
{" m ’Il
respectively at 4, B and €, the triangle 4 BC
will be normal to O 2.
The area of this triangle 4BC will be

2

”
([S: -—_—
limn

and by diminishing r this area may be diminished without limit,

The quantity of cleetricity which leaves the tetrahedron ABCO
by the triangle A8 must be equal to that which enters it through
the three triangles OBC, 0C., and OB,

The area of the triangle OBC is ;%, and the component of
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the current normal to its plane is %, so that the quantity which
enters through this triangle is 4,2 “_.
nmn

The quantities which enter through the triangles 0C4 and 0.4RB

respectively are v w
1,2 Y 1.2 7,

12 -7 and iy T

If y is the component of the velocity in the dircetion OR, then
the quantity which leaves the tetrahedron through 4BC is

17 lLinn

Since this is equal to the quantity which enters through the three
other triangles,

7% . § % ? w
b= A G + b
multiplying by géyjl—g » we get
Y = lutmotaw. (1)
If we put %t 402 w? = T2,
and make 2, m’, »’ such that
% =1{T, v=u'T, and w=aT;
then y =Tl +mm’ fun). (2)

Hence, if we define the resultant current as a vector whose
magnitude is T, and whose direction-cosines ate Oyw’y o, and if
y denotes the current resolved in a direction making an angle 0
with that of the resultant current, then

y =Tcos0; (3)
shewing that the law of resolution of currents is the same as that
of velocities, forees, and all other veetors,

287.] To determine the condition that a given surface may
be a surface of flow.

Let F(@,9,2) = (1)
be the equation of a family of surfaces any one of which is given by
making A constant, then, if we make

N T O

;’_x‘! +‘7.;/:! +Z;II=NT_5: (5)
the direction-cosines of the normal, reckoned in the direction in
which A increases, are

dA ax d\ .
=N;Z,—-7 77&=N;~—) n = zu (())
72
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Henee, if y is the component of the current normal to the surface,
dA dA ax) 7)
'(‘Z‘;+l(7‘y<+?()’—[;s- (

If y = 0 there will he no current through the surface, and the
surface may be called a Surface of Flow, because the lines of motion
are in the surface.

288.] The cquation of a surface of flow is therefore
d\ 2N A\

™o 8

dx +v(/‘l/ tw d: 0 ®)
If this equation is true for al] values of A, all the surfaces of the
family will be surfuces of flow.

289.] Let there be another family of surfaces, whose parameter
18 X', then, if these are also surfaces of flow, we shall have

7:]\’{74

12

N X dx
a w - = 0, 9)
% 7 + v (/] + w s 0 (

If there is a third family of surfaces of flow, whose parameter
18 A%, then 2N A\ ax” (10)

n—(/.'z‘: vT/y— +w—(E= 0.

Eliminating between these three equations, #, v, and w disappear
together, and we find
A\ A dA
ax ax dx
EZ A =
dX” AN g\

or A= ¢ (A, X); (12)
that is, A” is some functjon of A and A’

290.] Now consider the four surfaces whose parameters are A
A48A, X, and A4+ 8N, These four surfaces enclose a quadrilateral
tube, which we may call the tube 8A.50". Since this tube is
bounded by surfaces across which there is no flow, we may call
it a Tube of Flow. If we take any two sections across the tube,
the quantity which enters the tube at onc section must be equal
to the quantity which leaves it at the other, and since this quantity
is therefore the same for every section of the tube, let us call it
L3\ 3N where L is a function of A and X, the parameters which
determine the particular tule,

= 0; (11)
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ROL] If 58 denotes the section of a tube of flow by a plane
normal to #, we have by the theory of the change of the inde-
pendent: variables,

dAdN AN dN
BN = BS(SE UL L CA AN 13
BA.oA as(rly dz  dz ({y) (13)
and by the definition of the components of the current
nd8 = LBA.BN, (14)
AN AN dNdN 1
I’IODCL u =1 —(Ty (1;; - -(7; '{'l/"l/")'
. AN AN dAdX
Similarly v=1 (”; i (75—(-];); (15)

AN AN dX dN
=Gy =y @)

R92.] It is always possible when one of the functions A or Ais
known, to determine the other so that Z may be equal to unity.
For instance, let us take the plane of yz, and draw upon it a series
of equidistant lines parallel to y, to represent the sections of the
family A’ by this plane. In other words, let the function A’ be
determined by the condition that whenz = 0 XM=z If we then
make Z = 1, and therefore (when 2 = 0)

A =./'1u?;y;

then in the plane (¢ = 0) the amount of clectricity which passes
through any portion will be

f f wdy dz = flu\ aN, (16)

Having determined the nature of the sections of the surfaces of
flow by the plane of 4%, the form of the surfaces elsewhere js
determined by the conditions (8) and (9). The two functions A
and A" thus determined are sufficient to determine the current at
every point by equations (15), unity being substituted for Z.

On Lines of I'low.

R93.] Let a scries of values of A and of A" be chosen, the suc-
cessive differences in each serics being unity. The two series of
surfaces defined by these values will divide space into a system
of quadrilateral tubes through each of which there will be = unit
current. By assuming the unit sufficiently small, the details of
the current may be expressed by these tubes with any desired
amount. of minuteness, Then if any surface he drawn cutting the



342 CONDUCTION IN THREE DIMENSIONS, [294.

system of tubes, the quantity of the current which passes through
this surface will be expressed by the number of tubes which cut it,
since each tube carries unity of current,

The actual intersections of the surfaces may be called Lines of
Flow. When the unit js taken sufficiently small, the number of
lines of flow which cut a surface is approximately equal to the
number of tubus of flow which cut, it, so that we may consider
the lines of flow as expressing not only the direction of the current
but its strenyth, since each line of flow through g given scetion
corresponds to a unit current,

On Currend-Sheets and Current-Lunctions.

294.]1 A stratum of a conductor contained between two con-
secutive surfaces of flow of one system, say that of X', is called
a Current-Sheet. The tuhes of fow within this sheet are deter-
mined by the function A If Ay and A, denote the values of A at
the points 4 and p respectively, then the current from right to
left across any line drawn on the sheet from A to P i Ap—Ay.
If AP Ve an element, ds, of a curve drawn on the sheet, the current
which erosses this clement from right to left is

;/]:j\ ds,
This function A, from which the distribution of the current in
the sheet can he completely determined, is called the Current-
Funetion,

Any thin sheet of metal or conducting matter bounded on hoth
sides by air or some other non-conducting medium may bhe treated
as a current-sheet, in which {he distribution of the current may
be expressed by means of a current-function.  See Art. 647,

Eyuation of ¢ Continuity.

295.] If we differentiate the three equations ( 15) with respect to
, ¥,  respectively, remembering that / is a function of A and X/,

we find de  dv  Jdw

7 (E -+ 7 = 0. (17)

The corresponding equation in Hydrodynamics is called the
“quation of ‘Continuity.” The continuity which it expresses is
the continuity of existence, that 15, the fact that a material sub-
stance cannot leave one part of space and arrive at another, without

going through the space between. It cannot simply vanish in the
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one place and appear in the other, but it must travel along a con-
tinuous path, so that if a closed surface be drawn, including the
one place and excluding the other, a material substance in passing
from the one place to the other must go through the closed surfuce.
The most general form of the equation in hydrodynamics is

(!([l?l) (_I(/L?_) d(pm) (_/_p —0: (18)

de T dy Y e T =0

where p signifies the ratio of the quantity of the substance to the
volume it occupics, that volume being in this case the differential
element of volume, and (pux), (pv), and (p2) signify the ratio of the
quantity of the substance which crosses an clement of area in unit
of time to that arca, these arcas being normal to the axes of s, and
z respectively.  Thus understood, the equation is applicable to any
material substance, solid or fluid, whether the motion be continuous
or discontinuous, provided the existence of the parts of that sub-
stance is continuous, If anything, though not a substance, is
subject to the condition of continuous existence in time and space,
the equation will express this condition. In other parts of Physical
Science, as, for instance, in the theory of electric and magnetic
quantities, equations of a similar form occur. We shall call such
equations ‘equations of continuity’ to indicate their form, though
We may not attribute to these quantities the properties of matter,
or even continuous existence in time and space.

The equation (17), which we have arrived at in the case of
clectric currents, is identical with (18) if we make p = 1, that 18,
if we suppose the substance homogencous and incompressible, The
equation, in the case of fluids, may also be established by either
of the modes of proof given in treatises on Hydrodynamics. In
one of these we trace the course and the deformation of 2 certain
element of the fluid as it moves along. In the other, we fix our
attention on an clement of space, and take account of all that
enters or leaves it.  The former of these methods cannot be applied
to electric currents, as we do not know the velocity with which the
electricity passes through the body, or even whether it moves in
the positive or the negative dircction of the current. All that we
know is the algebraical value of the quantity which crosses unit
of area in unit of time, a quantity corresponding to (p#) in the
equation (18). We have no means of ascertaining the value of
cither of the factors p or «, and therefore we cannot follow a par-
ticular portion of electricity in its course through the body. The
other method of investigation, in which we consider what passes

e
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through the walls of an clement of volume, is applicable to clectric
currents, and is perhaps preferable in point of form to that which
we have given, but as it may be found in any treatise on Hydro-
dynamics we need not repeat it here.

Quantity of Btectricity which passes througl « given Surfuce.

296.] Let T be the resultant current at any point of the surface,
Let 48 be an clement of the surface, and Iet € he the angle between
I and the normal to the surface, then the total current through

the surface will be
/ I'cos e dsS,

the integration being extended over the surface.
As in Art, 21, we may transform this integral into the form

du  dv  duw
f/l‘cosedS =/f/(71; +(E+?&~)(Zm({1/(lz (19)

in the case of any closed surface, the limits of the triple integration
being those included by the surface. This is the expression for
the total eflux from the closed surface.  Since in ] cases of steady
currents this must be zero whateyer the limits of the integration,
the quantity under the integral sign must vanish, and we obtain
in this way the equation of continuity (17),




CHAPTER VIII,

RESISTANCE AND CONDUCTIVITY IN THRER DIMENSIONS.

~

On the most General Relations between Current and Elvctro-
motive Force.

297.] LET the components of the current at any point be #, v, .

Let the components of the clectromotive foree be X, ¥, Z

The electromotive force at any point is the resultant force on
a unit of positive electricity placed at that point. It may arise
(1) from clectrostatic action, in which case if J” is the potential,

v awv ar
or (2) from clectromagnetic induction, the laws of which we shall
afterwards examine; or (3) from thermoelectric or electrochemical
action at the point itself, tending to produce a current in a given
direction.

We shall in general suppose that X, ¥, Z represent the com-
ponents of the actual clectromotive force at the point, whatever
be the origin of the force, but we shall occasionally examine the
result of supposing it entirely due to variation of potential,

By Ohm’s Law the current is proportional to the electromotive
force. Hence X, ¥, Z must be linear functions of u, », w. We
may therefore assume as the equations of Resistance,

X = Riu+ Qv+ P,uw,
V= Put+Ro+ @, (2)
Z = @Q,u+ P+ Row.

We may call the coefficients 2 the coefficients of longitudinal
resistance in the directions of the axes of coordinates,

The coefficients 2 and Q may be called the coefficients of trans-
verse resistance. They indicate the electromotive force in one
dircction required to produce a current in a different direction.
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If we were at liberty to assume that a solid body may be treated
as a system of linear conductors, then, from the reciprocal property
(Art. 281) of any two conductors of a linear system, we might shew
that the clectromotive force along 2 required to produce a unit current
parallel to y must be equal o the clectromotive force along 4 re-
quired to produce a unit. enrrent parallel to > This would shew
that 7’ = @y, and similarly we shonld find L, = Q,, and L= Q,.
When these conditions are satisfied the system of coeflicients is said
to be Symmetrical.  When they are not satisfied it is called a
Skew system.

We have great reason to believe that in every actual case the
system is symmetrical, bhut we shall examine some of the con-
sequences of admitting the possibility of a skew system.

208.] The quantities u, », w may be expressed as linear functions
of X, ¥, Z by a system of equations, which we may call Iquations
of Conductivity,

w=r X+ pV+ 9,2
' =gy X+ Y 2 (3)
w=p, X4y V4 r 2,
we may call the coeflicients » the coeflicients of Longitudinal con-
ductivity, and » and 4 those of Transverse conductivity,

The coeflicients of resistance are inverse to those of conductivity.
This relation may be defined as follows :

Let [2QR] be the determinant of the cocflicients of resistance,
and [ pgr] that of the coeflicients of conductivity, then

I.PQ/’)] =])1 7)21’3“" QleQ:x+-/"J]')'.:]')3—])1Qll')l—])'.aQ;:]‘,z—]):sQ:x]i’:b (1)
Lrar) = 1y py st 41 ¢ st aty—prgyr— py g, Ta=Psqury, (5
30173 (

[_.[’Q/n’] [/)r[)'] = 1, (6)
LPQ]"] 7= (L, P~ @\ ), [7”/"] Py = (/),/);,-—1/1 ") (7)
&e. &e.

The other equations may he formed by altering the symbols
L, Q, Ry p, q, r, and the suflixes 1, 2, 3 in eyclical order.

Late of' Generation of Ileat.

R99.] To find the work done by the current in unit of time
in overcoming resistance, and so generating heat, we multiply the
components of the current by the corresponding components of the
cleciromotive foree,  We thus obtuin the following expressions for
Iy the quantity of work expended in unit of time ;
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W=Xut+Yvo4 22w, (8)
=Ru? 4 Rp? + Byw? + (P, + QR ow + (Py+ Q) wn +(Py+ Q) uv; 9)
=nX?+r,1 4 INARSVN +) Y7 + (224 1)ZX + (1 +¢.,) XY. (10)

By a proper choice of axes, cither of the two latter equations may
be deprived of the terms invol ving the products of u, v, w or of

X, Y, Z The system of axes, however, which reduces # to the form

B4 R, ot 4 R, w*
is not in gencral the same as that which reduces it to the form
P X, Ve, 22
It is only when the coefficients 2,, P,, P, are equal respectively
to @, Q., Q, that the two systems of axes coincide.
If with Thomson * we write

P=S§+T Q=8-1;

and P =5+t g =8—1;§ ()
then we have
[PRR] =R B, R, +2 8y 8, 8y— 820 — 8,2 R, — 8,2 R, ] (12)
+2 (8 LT, + ST, + ST\ Ty + R T2+ R, 1+ RTE S
and [PQR)r = R, R, — 82+ T2,
[PRRE]s =1, T, +8,8—R S, (13)

[PQR) = =T, 4 8,74 8,7,
If therefore we cause §,, §,, 8, to disappear, s; will not also dis-
appear unless the coefficients 1" are zevo.

Condition of Stabilily.

300.] Since the equilibrium of electricity is stable, the work
spent in maintaining the current must always be positive. The
conditions that # must be positive are that the three coeflicients
R, R,, R, and the three expressions

4 R, By~ (Py+ Q)%
4]{3]{1_(])2"‘ Q-,:)2; (14)
4 ]')1 ]"z—(P:s + @)%
must all be positive.
There are similar conditions for the coeflicients of conduetivity.

* Trans. R. 8. Edin., 18534, p. 165.
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Fquation gf Continuity in « Homogencous Medium,

301.] If we express the components of the electromotive foree
as the derivatives of the potential 7, the equation of continuity
du dv  dw _
- - = 15
dz " dy U dz (15)
becomes in a homogeneous medium

&V drr e 2y azr d*v
N T A2 o b2y 2% gy =0 (16)

If the medium is not homogencous there will be terms arising
from the variation of the cocflicients of conductivity in passing
from one point to another,

This equation corresponds to Laplace’s equation in an isotropic
medium,

302.] If we put

(7] = royr42 S18: 8y =71 8% =1, 82— 8.2, (17)

and [zllf] = Ay, d,+2 B BB, — A4, B2~ A BB~ A, B, (1 8)
where [7] 4, = 7, 7y3—8;2,

[7$] B, = s, S3—= 118y, (19)

and so on, the system 4, B will be inverse to the system 7, ¢, and
if we make
A2+ Ay Ay 2ty 2 Byyz+2B, 0+ 2B ay = [4B] g2, (20)

we shall find that
(4

y= 21
47 p

(21)
18 a solution of the eqnation, ,

In the case in which the coeflicients 7' are zero, the coeflicients 4
and B beecome identical with 2 and §. When 7 exists this i not
the case.

In the case therefore of electricity flowing out from a centre in an
infinite homogeneous, hut not isotropic, medium, the cquipotential
surfaces are ellipsoids, for each of which p is constant. The axes of
these ellipsoids are in the directions of the principal axes of con-
ductivity, and these do not coincide with the principal axesg of
resistance unless the system is symmetrical,

By a transformation of this equation we may take for the axes
of 2, y, 2 the principal axes of conductivity, The coefficients of the
forms s and B wil then be reduced to zero, and each cocfficient
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of the form . will be the reciprocal of the corresponding coeffi-
cient of the form ». The expression for p will he

@t gt 2
j-—+'/—+ = P

P (22)
Ty oy

303.] The theory of the complete system of equations of resist-
ance and of conduetivity is that of linear functions of three vari-
ables, and it is exemplified in the theory of Strains *, and in other
parts of physics. The most appropriate method of treating it is
that by which Hamilton and Tait treat g linear and vector function
of a veetor. We shall not, however, cxpressly introduce Quaternion
notation,

The coeflicients 7}, 7., 7', may be regarded as the rectangular

components of a vector 7, the absolute maguitude and direction

of which are fixed in the body, and independent of the direction of

the axes of reference. The same is true of 4y, #,, #,, which are the
components of another vector /.

The vectors 7'and £ do not in general coineide in direction.

Let us now take the axis of z so as to coincide with the vector
7, and transform the equations of resistance accordingly. They
will then have the form

X=Rout 8o +8w—-1
Y=S8u4+Ro+8wtlu, (23)
Z = Su+ Sv+ R

It appears from these equations that we may consider the elec-
tromotive force as the resultant of two forces, one of them depending
only on the coefficients Z and S, and the other depending on 7 alone.
The part depending on R and 8 is related to the current in the
same way that the perpendicular on the tangent plane of an
ellipsoid is related to the radius veetor, The other part, depending
on 7, is equal to the product of 7' into the resolved part of the
eurrent perpendicular to the axis of 7, and its direction is per-
pendicular to 7 and to the current, heing always in the direction in
which the resolved part of the current would lie if turned 90° in
the positive direction round 7

Considering the current and 7' as veetors, the part of the
electromotive foree due to 7' is the vector part of the product,
7 x current.

The coefficient 7' may be ecalled the Rotatory cocflicient. We

* See Thomson and Tait's Natural Philosophy, § 154.
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have reason to believe that it does not exist in any known sub-
stance. It should be found, if anywhere, in magnets, which have
a polarization in one dircction, probably due to a rotational phe-
nomenon in the substance,

304.] Let us next consider the general charrcteristic equation

of ¥,

dr’ dl
: )

() ——
Py

d 14 dl’ d F. d i
a5 g T2 g+ 00+ 7 (0,

d ( ! dar arv
P2yt 4 a

ey

av.
+ +7g ';/':)4-4 mp =0, (24)

dz
where the cocfficients of conductivity 2, ¢, » may have any positive
values, continnous or discontinuous, at any point of space, and V
vanishes at infinity.,

Also, let @, 4, ¢ be three functions of , y, z satisfying the condition

dae b de
.- - — — 0 .
it dy + ds TATe ’ (25)

dV dV d7

+ u,

and let a=7y 0 + 15
b AT ar ’
T gy Ty T (26)
_p A A i
CEP gyt g, BTy, 0

Finally, let the triple-integral

W= f ff {Ria®+ Rb* 4 R e

(P Q) e+ (Pt Q) cat(Py + Q) b} dudydz (27)
be extended over spaces bounded as in the enunciation of Art. 97,
where the coeflicients 7, Q, 22 are the coefficients of resistance. *

Then 7+ will have a unique minimum value when «, 4, ¢ are such
that #, v, w are each everywhere zero, and the characteristic equation
(24) will therefore, as shewn in Art. 98, have one and only one
solution.

In this case /" represents the mechanical equivalent of the heat
generated by the current in the system in unit of time, and we have
to prove that there is one way, and one only, of making this heat
a minimum, and that the distribution of currents (ebc) in that case
is that which arises from the solution of the characteristic equation

of the potential 7,
The quantity #” may be written in terms of equations (25) and (26),




305. ] EXTENSION OF THOMSON’S TIEOREM, 351
g2 T jj- 2
e [[[n ATl
" —./:/,/‘l,’z/.r, +Jz(<,/. +):,({:!

e

¥V dV ardyv aVdi)
FOED) e+ k1D, G+t g dedds

iid

+/[/ {20+ B2 0% B2 w?

+ (P14 Q) rw + (Py+ Q) wu+ (P, + Qur}dedydz
+ ///(u (’]/Z +v ({//—: 4w :Z—)(/w({//(/:. (28)
de dv  dw
e Tyt =0
the third term of //” vanishes within the limits.

The second term, heing the rate of conversion of electrical energy
into heat, is also essentially positive. Its minimum value is 7CT0,
and this is attained only when u, 7, and w are everywhere zero.

The value of /¥ is in this case reduced to the first term, and is
then 2 minimum and a unique minimum.

305.] As this proposition is of great importance in the theory of
electricity, it may be useful to present the following proof of the
most general case in a form free from analytical operations.

Let us consider the propagation of electricity through a conductor
of any form, homogeneous or heterogencous.

Then we know that

(1) If we draw a line along the path and in the direction of
the electric current, the line must pass from places of high potential
to places of low potential.

(2) If the potential at every point of the system be altered in
a given uniform ratio, the currents will be altered in the same ratio,
according to Ohm’s Law.

(8) It a certain distribution of potential gives rise to a certain
distribution of currents, and a second distribution of potential gives
rise to a second distribution of currents, then a third distribution in
which the potential is the sum or difference of those in the first
and second will give rise to a third distribution of currents, such
that the total current, passing through a given finite surface in the
third case is the sum or difference of the currents passing through
it in the first and second cases. For, by Ohm’s Law, the additional
current due to an alteration of potentials is independent of the
original current due to the original distribution of potentials,

(4) If the potential is constant over the whole of a closed surface,

Since (29)
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and if there are no electrodes or intrinsic clectromotive forces
within it, then there will be no currents within the closed surface,
and the potential at any point within it will be equal to that at the
surfuce.

If there are eurrents within the closed surfuce they must either
be closed curves, or they must begin and end cither within the
closed surface or at the surface itsclf.

But since the current must pass from places of high to places of
low potential, it cannot flow in a closed curve.

Since there are no eleetrodes within the surface the current
cannot begin or end within the closed surface, and since the
potential at all points of the surfice is the same, there can be
no current along lines passing from one point of the surface to
another.

Hence there are no currents within the surface, and therefore
there can be no difference of potential, as such a difference would
produce currents, and therefore the potential within the closed
surface is everywhere the same as at the surface.

(5) If there is mo clectric current through any part of a closed
surface, and no eleetrodes or intrinsic electromotive forces within
the surface, there will Le no currents within the surface, and the
potential will be uniform.

We have scen that the currents cannot form closed curves, or
begin or terminate within the surface, and since by the hypothesis
they do not pass through the surface, there can be no currents, and
therefore the potential is constant.

(6) If the potential is uniform over part of a closed surface, and
if there is no current through the remainder of the surface, the
potential within the surface will be uniform for the same reasons.

(7) If over part of the surface of a body the potential of cvery
point is known, and if over the rest of the surface of the body the
current passing through the surface at each point is known, then
only one distribution of potentials at points within the body can
exist.

For if there were two different values of the potential at any
point within the body, let these be 77 in the first case and Fyin
the second case, and let us imagine a third case in which the
potential of every point of the body is the exeess of potential in the
first case over that in the second. Then on that part of the surface
for which the potential is known the potential in the third case will
be zcro, and on that part of the surface through which the currents
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are known the currents in the third case will be zero, so that by
(6) the potential everywhere within the surface will be zero, or
there is no excess of 7, over 7, or the reverse. Hence there is
only one possible distribution of potentials, This proposition is
true whether the solid he bounded by one closed surface or by
several,

Ou the dpproximate Culenlation of the Resistunce of' «w Condunetor
of « given Form.

306.] The conductor here considered has its surface divided into
three portions.  Over one of these portions the potential is main-
tained at a constant value. Overa second portion the potential has
a constant value different from the first. The whole of the remainder
of the surface is impervious to clectricity, We may suppose the
conditions of the first and sccond portions to be fulfilled by applying
to the conductor two electrodes of perfectly conducting material,
and that of the remainder of the surface by coating it with per-
fectly non-conducting material,

Under these circumstances the current in every part of the
conductor is simply proportional to the difference between the
potentials of the clectrodes. Calling this difference the electro-
motive force, the total current from the one electrode to the other
is the product of the electromotive force by the conductivity of the
conductor as a whole, and the resistance of the conductor is the
reciprocal of the conductivity.

It is only when a conductor is approximately in the cirenmstances
above defined that it can be said to have a definite resistance, or
conductivity as a whole. A resistance coil, consisting of a thin
wire terminating in large masses of copper, approximately satisfies
these conditions, for the potential in the massive electrodes is nearly
constant, and any differcnces of potential in different points of the
same electrode may be neglected in comparison with the difference
of the potentials of the two clectrodes.

A very usceful method of caleulating the resistance of such con-
ductors has been given, so far as I know, for the first time, by
the Hon. J. W. Strutt, in a paper on the Theory of Resonance *,

It is founded on the following considerations.

If the specific resistance of any portion of the conductor be
changed, that of the remainder heing' unchanged, the resistance of

* Phil. Traus,, 1871, p. 77.  Sec Art. 102.
YOL. I. Ad
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the whole conductor will be increased if that of the portion is
increased, and diminished if that of the portion be diminished,

This prineiple may be regarded as self-cvident, but it may casily
be shewn that the value of the expression for the resistance of a
system of conductors between two points selected as electrodes,
increases as the resistance of cach wmember of the system in-
creases,

Tt follows from this that if a surface of any form be described
in the substance of the conductor, and if we further suppose this
surface to e an infinitely thin sheet of u perfectly conducting
substance, the resistance of the conductor as a whole will be
diminished unless the surface is one of the equipotential surfaces
in the natural state of’ the conductor, in which case no effect will
be produced by making it a perfect conductor, as it is already in
electrieal equilibrium.

If therefore we draw within the conductor a series of surfaces,
the first of which coincides with the first electrode, and the last
with the second, while the intermediate surfaces are hounded by
the non-conducting surface and do not intersect cach other, and
if we suppose each of these surfaces to be an infinitely thin sheet
of perfectly conducting matter, we shall have obtained a system
the resistance of which is certainly not greater than that of the
original conductor, and is equal to it only when the surfaces we
have chosen are the natural equipotential surfaces.

To caleulate the resistance of the artificial system is an operation
of much less difficulty than the original problem. Tor the resist-
ance of the whole is the sum of the resistances of all the strata
contained between the consecutive surfaces, and the resistance of
cach stratum can be found thus:

Let 8 be an clement of the surfuce of the stratum, » the thick-
ness of the stratum perpendicular to the element, p the specific
resistance, # the difference of potential of the perfectly conducting
surfaces, and €' the current through 8, then

o 1
]C’ = 46 = 1, y
‘ E Py dS, (1)
and the whole eurrent through the stratum is
1
— L .
0_.kf/Py(iS, (2)

the integration being extended over the whole stratum bounded by
the non-conducting surface of the conductor.
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Hence the conductivity of the stratum js
C /‘ 1
2= /S, .
£ ISy ()
and the resistance of the stratum js the reeiprocal of this quantity.,

If the stratum be that hounded by the two surfuces for which
the function # has the values and £ dfF respectively, then

dlI’ dF 2 a2 d I 244
L — 1 . N 1
y = V= [(./.L-) +(y,) +((/.~)] )
and the resistance of the stratum is
i (5)

//% vFdS

To find the resistance of the whole artificial conductor, we have
only to integrate with respeet to £ and we find
dr

///i v rdS

The resistance £ of the conductor in its natural state is greater
than the value thus obtained, unless all the surfaces we have chosen
are the natural equipotential surfaces. Also, since the true value
of £ is the absolute maximum of the values of /', which can thug
be obtained, a small deviation of the chosen surfaces from the true
cquipotential surfaces will produce an error of £ which is com-
paratively small,

This method of determining a lower limit of the value of the
resistance s evidently perfectly general, and may be applied to
conductors of any form, even when p, the specifice resistance, varies
in any manner within the conductor.

‘The most, familiar example is the ordinary method of determining
the resistance of a straight wire of variable section. In this case
the surfaces chosen are planes perpendicular {o the axis of the
wire, the strata have parallel faces, and the resistance of a stratum
of seetion § and thickness iy is

(/]fl =p—;{;\‘: (7)

)
=

(V)

and that. of the whole wire of length s is
p s
AR, = ¢ (8)
. A
where § js the transverse seetion and je function of s.

Aa 2
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This method in the case of wires whose section varies slowly
with the length gives a result very near the truth, but it is really
only a lower limit, for the true resistance is always greater than
this, except in the case where the section is perfectly uniform,

807.] To find the higher limit of the resistance, let us suppose
a surface drawn in the conductor 1o be rendered impermeable to
clectricity. The effect of this must be to increase the resistance of
the conductor unless the surface is one of the natural surfaces of
flow. By means of two systems of surfaces we can form a set of
tubes which will completely regulate the flow, and the effect, if
there is any, of this system of impermeable surfaces must be to
Increase the resistance above its natural value.

The resistance of cach of the tubes may be caleulated by the
method already given for a fine wire, and the resistance of the
whole conductor is the rociprocal of the sum of the reciprocals of
the resistances of all the tubes, The resistance thus found is greater
than the natural resistance, except when the tubes follow the
natural lines of flow.

In the easc already considered, where the conductor is in the
form of an clongated solid of revolution, let us measure x along the
axis, and let the radius of the scetion at any point be 6. Let one
set of impermeable surfaces be the planes through the axis for cach
of which ¢ is constant, and let the other set be surfaces of revolution
for which 7= gl (9)
where  is a numerieal quantity between 0 and 1.

Let us consider a portion of one of the tubes bounded by the
surfaces ¢ and p+d e, ¥ and ¢ + dyr, x and z+ da.

The scction of the tube taken perpendicular to the axis is

ydyddp = L2 Ay dp. (10)
If 6 be the angle which the tube makes with the axis
_ 5(]& .
tan g = e (11)
The true length of the element of the tube is e sec 0, and its
true section is 322 dyr dgp cos o,
so that its resistance is
dw dz db *
20— e gp2 = ¢ _— S ). 12
Py ¢ 0= 20 gy (LH v ) (12)
dx / de db j'“‘
' = ) H = Py 1 3
Let d f,) o2 wd A . [),I2 A ( )

—
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the integration being extended over the whole length, , of the
conduetor, then the resistance of the tube dy dep is

2 .
2 7
Ay d (A4 yB),
dr dd
2 (A +yB)

To find the crmductiviby of the whole conductor, which is the
sum of the conductivitios of the separate tubes, we must integrate
this expression between =0 and ¢ = 2m and between ¢ = 0
and = 1. The result is

1 1r B
=" 1o , 14)
=y log (] + A) (14

and its conductivity is

which may be less, but cannot be greater, than the true con-
duetivity of the conductor.

) :
When :;: is always a small quantity {;—)« will also be small, and we
L L

may expand the expression for the conductivity, thus

1 T B 32 ya
]}f=%(l~$7+%j—l.—_,-—im+&c.)~ (15)

The first term of this expression, % , 18 that which we should

have found by the former method as the superior limit of the con-
ductivity. Hence the true conductivity is less than the first term
but greater than the whole series, The superior value of the
resistance is the reciprocal of this, or

152 1 p
T2 TR

If, besides supposing the flow to be guided by the surfaces ¢ and
¥, we had assumed that the flow through each tube is proportional
o dyrdg, we should have obtained as the value of the resistance
under this additional constraint

,_ 4 B
F= (1447 ~&e.)- (16)

R”:%(A+§BL (17)

which is evidently greater than the former value, as it ought to he,
on account of the additional constraint, In Mr. Strutt’s paper this
is the supposition made, and the superior limit of the resistance
there given has the value (17), which is a little greater than that
which we have obtained in (16),
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308.7 We shall now apply the same method to find the correction
which must be applied to the length of a eylindrical conductor of
radius @ when its extremity is placed in metallic contact with a
massive electrode, which we may suppose of a different, metal.

For the lower limit of the resistunce we shall suppose that an
infinitely thin disk of perfeetly condueting matter is placed hetween
the end of the eylinder and the massive clectrode, so as to hring
the end of the eylinder {o one and the same potential throughout.
The potential within the eylinder will then he a function of its
length only, and if we suppose the surface of the electrode where
the eylinder meets it to be approximately plane, and all its dimen-
sions to be large compared with the diameter of the eylinder, the
distribution of potential will he that due to a conduetor in the form
of a disk placed in an infinite medium.  Sce Arts, 152,177,

If £ is the difference of the potential of the disk from that of
the distant parts of the clectrode, € the' eurrent issuing from the
surfuce of the disk’into the clectrode, and p’ the specific rosistance
of the cleetrode, pC = 1alk. (18)

Henee, if the length of the wire from a given point to the
electrode is /, and its speeifie resistance p, the resistance from that,
point Lo any point of the electrode not near the junction is
l/ Il,

= 4 "
' P Ta* f Na’
and this may be written
. -
R = T—_%_T(L—f- -I;) ; 5 (IU)

where the sceond term within brackels is a quantity which must
be added to the length of the eylinder or wire in caleulating its
resistance, and this is certainly too small a correetion.

To understand the nature of the outstanding error we may
observe, that whereas we have supposed the How in the wire up
to the disk to be uniform thronghout the scetion, the flow from
the disk to the cleetrode is not uniform. but ix at any point in-
versely proportional to the minimum chord througsh that point.  In
the actual case the flow through the disk will not be uniform,
but it will not vary so mueh from point {o point as in this supposed
case.  The potential of the 'disk in the actual ease will not he
uniform, hut will diminish from the middle to the edge.

309.] We shall next determine a quantity greater than the true
resistance by constraining the flow through the disk to he uniform
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at every point.  We may suppose electromotive forees introduced
for this purpose acting perpendicular to the surface of the disk.

The resistance within the wire will be the same as before, hut
in the clectrede the rate of generation of heat will be the surface-
integral of the product of the flow into the potential. The rate of

v

flow at any point is —=, , and the potential is the same as that of
mu?

an cleetrified surface whose surface-density is «, where
2o = p. ] (2 0)

p being the specific resistance.

We have therefore to determine the potential energy of the
clectrification of the disk with the uniform surface-density o,

The potential at the edge of a disk of uniform density o is easily
found to be 4¢o. The work done in adding a strip of breadth
da at the circumference of the disk is 27acda.4ao, and the
whole potential cnergy of the disk is the integral of this,

or P = 3 a’ o, (21)

In the case of clectrical conduction the rate at which work is
donc in the clectrade whose resistance is 27 is
o 47
Cy__ Rl — , ])’ (22)

)
whence, by (20) and (21),
8p
=5
' 37ta’

/

and the correction to be added to the length of the cylinder is
Fo8
PREE
this correction being greater than the true value. The true cor-

4

rection to be added to the length is therefore —l;;—aﬁ., where 2 is a

a,

. ’ 8 -
number lying between 71— and 40 OF hetween 0.785 and 0.849.
4 T

Mr. Strutt, by a second approximation, has reduced the superior
limit. of % to 0.8282,



CIIAPTER IX.
CONDUCTION THROUGH HETEROGENEOUS MEDIA.

On the Conditions to be Fulfilled at the Surfuce of Separation
between Two Conducting Media,

310.] TuEre are two conditions which the distribution of currents
must fulfil in general, the condition that the potential must he
continuous, and the condition of ¢ continuity’ of the cleetric eurrents.

At the surface of separation hetween two media the first of these
conditions requires that the potentials at two points on apposite
sides of the surface, but infinitely near each other, shall he cequal.
The potentials are here understood to be measured by an eclee-
trometer put in connexion with the given point by means of an
electrode of a given metal. If the potentials are measured by the
method deseribed in Arts. 222, 246, where the electrode terminates
in a cavity of the conductor filled with air, then the potentials at
contiguous points of different metals measured in this way will
differ Ly a quantity depending on the temperature and on the
nature of the two metals.

The other condition at the surface is that the current through
any element of the surface is the same when measured in either
medium,

Thus, if 7, and ¥, are the potentials in the two media, then at
any point in the surfice of separation

=7 s (1)
and if w;, vy, w, and n,, v,, m, are the components of currents in the
two media, and /, m, » the direction-cosines of the normal to the
surface of separation,

wl o m gy = Ul vy m+ w,an, (2}

In the most general case the componenls 7, ¢, w arce linear
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functions of the derivatives of 7, the forms of which are given in

the equations v = r X+ p, Y+ g7,

v =g X+ 0 Y+ 2 (8)
w=p, X+ ¥+ 1,2
where X, ¥, Z are the derivatives of 7 with respect to a, y, 2
respectively.

Let us take the case of the surface which separates a medium
having these cocfficients of conduction from an isotropic medium
having a coefficient of conduction equal to 7.

Let X’, ¥’, Z’ be the values of X, ¥, Z in the isotropic medium,
then we have at the surface

V=17 (4)
or Xde+Ydy+2Zde = X'de+ Y'dy+2'dz, (5)
when lde+mdy+4+ndz = 0. (6)

This condition gives
X' =X+4ncl, V=Y4dramn, 2 =Z+4nan, (7)
where ¢ is the surface-density.

We have also in the isotropic medium .
w=rX’, v=1r}’, w=rz, (8)
and at the houndary the condition of flow is
Wit v'm+w'n = wl4vmt+wn, (9)

or r(lX+mY+aZ+1wao)
=X+ p V4, 2) + ma(gs X4 1, Y4 p Z) 40 (0, X+ . Y2, 7), (10)
whence
dmor = (L(ry—r)+mgs+up) X+ ((py+m (ry—r)+nq,) ¥
+ (lgy+mpy+ 0 (ry—1)) Z. (11)

The quantity o represents the surface-density of the charge
on the surface of separation. In crystallized and organized sub-
stances it depends on the direction of the surfice as well as on
the force perpendicular to it. In isotropic substances the coeffi-
cients p and ¢ are zero, and the coefficients 7 are all equal, so that

dmo = (% - 1)(1X+m1'+nZ). (12)

where 7, is the conductivity of the substance, » that of the external
medium, and /7, m, 2 the direction-cosines of the normal drawn
towards the medium whose conduetivity is 7.

When both media are isotropic the conditions may he greatly
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simplified, for if 4 is the specific resistance per unit of volume, then
__l//], po ] (/I’ we L ((/:’ (13)

A ode Lody k dz
and if v is the normal drawn at any point of the surface of separation
from the first medium towards the second, the conduction of con-
tinuity is 1 i/_]- _ 1 ﬂ_’: (14)

£ dy ky dv

I1f 6, and 6, ure the ungles which the lines of flow in the first and
sccond media respectively make with the normal to the surface
of separation, then the tangents to these lines of flow are in the
same plane with the normal and on opposite sides of it, and

Atan 0, = I, tan 0,. (15)
This may be called the law of refraction of lines of flow.

311.] As an example of the conditions which must, be fulfilled
when clectricity crosses the surface of separation of two media,
let us suppose the surface spherical and of radius @, the specific
resistance being £, within and £, without the surface.

Let the potential, both within and without the surface, be ex-
panded in solid harmonics, and let the part which depends on
the surface harmonic §, bhe

Fy= (it Byrtvny g (1)
Vo= (dyr'+ B, Gr0) 5 (2)
within and without the sphere respectively.

At the surface of separation where » = « we must, have

dry 1 4dr,

A S L
From these conditions we get the equations
(Ay—d)a* 4+ B — B, = 0,
Lo

1 . . ; .
G- Al A,)iazivr (/_‘1, B~ ./;-_7 BYGi+1) = 0.

U =

=7, and

These equations are suflicient, when we know two of the four
quantities 4,, A,, B, 15,, to deduce the other two.

Let us suppose 4, and By known, then we find the following
expressions for Ay and B,
Ay + 1)+ hyd) 4, + y—A) (I 1) Bla-zi+n

Ai(2i41)

A=k idarier (hiit k(i + 1) B,

T f(zian T

/12 = >

—_—
—_
o
=
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In this way we can find the conditions which each term of the
harmonic expansion of the potential must satisfy for any number of
strata bounded by concentric spherical surfaces.

812.] Let us suppose the radius of the first spherical surface
to be @), and let there be a second spherical surfuce of radiug a,
greater than «;, heyond which the speeilic resistance is kg, If there
are mo sources or sinks of electricity within these spheres there
will be no infinite values of ¥, and we shall have B, =o0.

We then find for .4, and 7,, the coefficients for the outer medium,

bk @ = [ )RR R Ge )+ |
+i(i+ 1) (ky—£,) ('{'3_’(’3)(::)-'”‘ ]AU i (6)

Bk by (2i41)% = RRUNES Yy} (hy—hy) @20 J
i (hy—h) {hy i+ Ay (D4 1)) (e D7

The value of the potential in the outer medium depends partly
on the external sourees of eleetricity, which produce currents in-
dependently of the existence of the sphere of heterogencous matter
within, and partly on the disturbance caused by the introduction of
the heterogencous sphere,

The first part must depend on solid harmonies of positive degrees
only, beeause it cannot have infinite values within the sphere.  The
sceond part must depend on harmonies of negative degrees, because
it must vanish at an infinite distance from the centre of the sphere.

Henee the potential due to the external clectromotive forees must
be expanded in a series of solid harmouics of positive degree.  Let
dy be the coefficient of one these, of the form

zl;, IS‘- 7.
Then we can find /), the corresponding cocfficient for the inner
sphere Ly equation (5), and from this deduce Ay By and B, Of
these B3, represents the effect on the potential in the outer medium
due to the introduction of the heterogeneous spheres.

Let us now suppose 4; = £, so that the case is that of a hollow
shell for which £ = £,, separating an inner from an outer portion of
the same medinm for which 2= £,

If we put
1

( ; = '-'T

(it 1)2 ey byt d (1) (hy— )2 (1 — (,(f')u

1—>’
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then oy = A 4, (2i+1)2C4,,
Ay =By (204 1) (A (Z 4+ 1)+ 4p7)C A, 7
By=ha(2i4+1) (k\=k)a®*104,,
By =i (ky—R) (k) (04 1) 44y 7) (0,241 —{112"‘”)6'113.J

The difference between A, the undisturbed coefficient, and A, its
value in the hollow within the spherical shell, is

A=y = b=k i 4D (1= (O e, @)

Since this quantity is always positive whatever he the values
of % and £, it follows that, whether the spherical shell conducts
better or worse than the rest of the medium, the electrical action
within the shell is less than it wonld otherwise be. If the shell
is a better conductor than the rest of the medium it tends to
cqualize the potential all round the inner sphere. If it is a worse
conductor, it tends to prevent the clectrical currents from reaching
the inner sphere at all.

The casc of a solid sphere may be deduced from this by making
a; = 0, or it may be worked out independently.

313.] The most important term in the harmonie expansion is
that in which / = 1, for which

(= !

. PRGN
Akt 2 (=) (1 - ((;,1,) )
d, =9k I dy= 3k, (24 +£,)C4,,
B,=3k,(ky—k)a,* C A, B:,=(/{'2—1'1)(2,{',+l:z)(a23—al“)0/1:‘.

The case of a solid sphere of resistance 4, may be deduced from
this by making ¢; = 0.  We then have

9

37,
4, = ky+ 2,-{--_;":“ B, =0, )
(10
v Ty
j}a = 1:1-_{.7‘2- :.2(12"/13~

It is easy to shew from the general expressions that the value
of By in the case of a hollow sphere having a nucleus of resistance
ky, surrounded by a shell of resistance %,, is the same as that of
a uniform solid sphere of the radius of the outer surface, and of
resistance A7, where

Rk +4)a) + (by—ky) a)?

= kA2 b "
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314.] If there are u spheres of radius a; and resistance 4, placed
in a medium whose resistance is £,y at such distances from each
other that their cffects in disturbing the course of the current
may be taken as independent of each other, then if these spheres
are all contained within a sphere of radius @,, the potential at a
great distance from the centre of this sphere will be of the form

, 1
7 =(‘1+n])’—7'e)cost9, (12)
where the value of 5 is
by —k,
B=1_72,43, (13)
2k, + £, 1

The ratio of the volume of the # small spheres to that of the
sphere which contains them is
na?
=" (14)
The value of the potential at a great distance from the sphere
may therefore be written

—_ 3 kl—l”-‘ 1 08 5
V= (/I +_/)((.: E*k;:}; ;2 )LOb 0. (] J)

Now if the whole sphere of radius ¢, had been made of n material
of speeific resistance X, we should have had

_ 2 K—4y 1) 16
V——- [.{1+ (L2 _2_1\’+ l‘:— -7.2 jcoﬁ 0. ( )

That the one expression should be equivalent to the other,

K= 2hth+pti—k) k. (17)
28 +h,—2p(h—4y) ®

This, therefore, is the specific resistance of a compound medium
consisting of a substance of specific resistance £,, in which are
disseminated small spheres of specific resistance #,, the ratio of the
volume of all the small spheres to that of the whole being ». In
order that the action of these spheres may not produce cffects
depending on their interference, their radii must be small compared
with their distances, and therefore 2 must be a small fraction,

This result may he obtained in other ways, but that here given
involves only the repetition of the result already obtained for a
single sphere.

When the distance between the spheres is not great compared
with their radii, and when =y is considerable, then other
2h + 4y
terms enter into the result, which we shall not now consider.
In consequence of these terms certain systems of arrangement of
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the spheres cause the resistance of the compound medium to he
different in different directions.

Application of the Principle of Images.

315.7 Let us tuke as an example the case of two media separated
by a plane surface, and let us suppose that there is a source §
of clectricity at a distance « from the plane surface in the first
medium, the quantity of electricity flowing from the source in unit
of time being S.

It the first medium had heen infinitely extended the current
at any point 7 would have been in the direction SP, and the

: r , Sk
potential at 7 would have been =7 where J = 1—‘-'~ and r = SP,
" 1
In the actual case the conditions may be stisfied by taking

a point 7, the image of § in the sccond medium, such that 7§
is normal to the plane of separation and is hisceted by it.  Let »,
be the distance of any point from 7, then at the surface of scparation
"= 1)
dr, dr,
dv =" dy’ @)
Let the potential 77 at any point in the first medium be that
due to a quantity of electricity % placed at 8, together with an
imaginary quantity %, at /, and let the potential 7, at any point
of the second medium be that due to an imaginary quantity Z, at

S, then if Bk i
="+ 2y and 1, =", (3)
rnoon T

the superficial condition /7, = I, gives
. Fy ]/’_3 = /'l, (1)
and the condition
1 JdT 1 dV,

Wl TR )
gives | I 1., .
1—_’ (B—1) = 7 E, (6)

- 2L, . . ky—F
whence b= 2 = 2V 7
(§ [} ,{.] +‘.) ) j P ,{', T '{.: ] ( )

The potential in the first medium is therefore the same as would
be produced in air by a charge ' placed at 8, and a charge Z,
at / on the electrostatic theory, and the potential in the second
medium is the same as that which would be produced in air by
a charge ) at .




!
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r § r 1 } 4 H
The current at any point of the first medium is the same as would

Sv

have been produced by the souree § together with a source A""'—»/L.-I»
Sk 44
. L4 . l 2

placed at [ if the first medium had been infinite, and the current

at any point of the sccond medinm is the same as would have been
9

od 2k S .
produced by a source (bt 7) placed at 8 if the second medium had

been infinite.

We have .t-hus a complete theory of clectrical images in the case
of two media separated by a plane boundary.  Whatever be the
nature of the clectromotive forees in the first medium, the potential
they produce in the first medium may be found by combining their
direct effect, with the effect of their image,

If we suppose the sccond medium a perfect conductor, then
#, =0, and the image at 7 is eyual and opposite to the course
at §. This is the ease of clectric images, ns in Thomson’s theory
in eleetrostatics.

If we suppose the second medium a perfeet insulator, then
4y = oe, and the image at I is cqual to the source at & and of the
same sign.  This is the case of images in hydrokineties when the
fluid is bounded by a rigid plane surface.

316.] The method of inversion, which is of so much use in
clectrostatics when the bounding surface js supposed to be that
of a perfeet conductor, is not applicable to the more general case
of the surface scparating two conductors of uncqual eleetric resist-
ance. The method of inversion in two dimensions 15, however,
applicable, as well as the more general method of {ransformation in
two dimensions given in Art. 190 *,

o

Conduction through a Plate separating Two Media.

317.7 Let us next consider the effect of a plate of thickness /A of
a medium whose resist-
ance is &,, and separating % % %
two media whose resist-

ances are A, and .A';,, in ; 4 T = +
altering the potential due ! 2
to a source §in the first
medium.

The potential will be Fig. 23,

* Sev Kirchhoff, Pogg. Aan. Ixiv, 497, and Ixvii. 344 ; Quincke, Powr. xevii, 382
and Smith, Proe. .S, Edin., 1869-70, l", 7. P R T
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equal to that due to a system of charges placed in air at certain
points along the normal to the plate through 8.

Muke

Al=84, BL=8B, 4J,=I14, Bl,=J\ B, AJ,=1I,4, &e.;
then we have two series of points at distances from cach other equal

to twice the thickness of the plate.
318.] The potential in the first medium at any point 2 is equal to

r I I &e. g
ps ¥ Tt Bl PL Y ®)
that at a point 2 in the second

I I Iy I

I G A s
J J,/
+ 1)’./ + P + &e., (9)
and that at a point 2 in the third
]',"’ J;
+ &e,, (10)

75t T,
where 7, 7', &e. represent the imaginary charges placed at the
points /, &c., and the accents denote that the potential is to be

taken within the plate.
Then, by the last Article, for the surface through A we have,

k,—k 24
I = M .E’ = 2 5.
g Py (1
For the surface through B we find
’ ka""kz 0 A 2 1; v/ ¢
[1 _1'3+sz’ y —1.3_*_'_,{; (13)
Similarly for the surface through 4 again,
,_ k—ky o, 24,
Jl "AII";II’ II—A +l 1 s (13)
and for the surface through 53,
, =k, 2k o,
Jz _l‘u—f—l'gell’ ‘]1—,{ +K J (H)
If we make ky—k, . ky—hy
p = Z:l l‘, dnd = &‘u +k‘,
we find for the potential in the first medium,

i FE

F= PSP PT +(1— )Pj;K+P(1—P)PP']‘)‘Z;+&c.

Al

/ o 7' ]J -
+p'(1~p*) (pp )"—1']—,7"' (15)
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For the potential in the third medium we find

"= (14 pf Ly PE (ep)"

If the first medium is the same as the third, then #, = %, and
p = ¢, and the potential on the other side of the plate will be

Zn

; 1 2
/f:(l_p2>E-§-p§+7’f—l+&c.+ ;,7”} (17)

If the plate is a very much better conductor than the rest of the
medium, p is very nearly equal to 1. If the Plate is a nearly perfect
insulator, p is nearly equal to — 1, and if the plate differs little in
conducting power from the rest of the medjum, pis a small quantity
positive or negative.

The theory of this case was first stated by Green in his ¢ Theory
of Magnetic Induction’ (Fssay, p. 65). His result, however, is
correct only when p is nearly equal to 1% The quantity gy which

he uses is connected with p by the equations
2p _ k—hk 39 _ k—&k,

g=g— =555 o

3—p " E+24 =2+.9~/”'1‘F'T'2.

If we put p= T-?Zr ;’;} » we shall have o solution of the problem of

the magnetic induction excited by a magnetic pole in an infinite
plate whose coefficient of magnetization is .

Or Stratified Conductors.

319.] Let a conductor be composed of alternate strata of thick-
ness ¢ and ¢’ of two substances whose coefficients of conductivity
are different. Required the coefficients of resistance and conduc-
tivity of the compound conductor.

Let the plane of the strata be normal to Z Lot every symbol
relating to the strata of the second kind be accented, and let
every symbol relating to the compound conductor be marked with
a bar thus, X, Then

X=X=x, (c+Nu =cutcw,
Y=yvy=y, (e+¢)o = cv4ev;
(e+c’)2= eZ+c7, w=w=u
We must first determine #, ¥, v, ¢, Zand Z’ in terms of

X, ¥ and % from the equations of resistance, Art. 297, or those

* See Sir W. Thomson's ‘Note on Induced Magnetism in a Plate,” Camb. and
Dub. Math. Journ., Nov, 1845, or Reprint, art. ix. § 156.

VOL. 1. Bb
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of conductivity, Art. 298, If we put D for the determinant of the
coefficients of resistance, we find

uryD = R, X~ Q, Yyig, D,

vigD = R, ¥— P, X+ p D,

Zry =—=p,X—q ¥V+w

Similar equations with the symbols accented give the values

of «/, v and #. Having found %, 5 and @ in terms of X, Y and 7,
we may write down the equations of conductivity of the stratified

’

¢ ¢
conductor. If we make 4 = . and #'=-5, we find
, ,

3 3
g el Lt Pyl
D= ,}+/‘, 1= /L+/&l
5 koA Ky = _ hp+kg)
Py = B e = A
7, = ey +_{3’li;s’ _ 717__"(_9-114{)_(_22—']3')’
- ctd (k+£)(e+¢)
7y = eqy+ ¢’ gy _ (= 1) (22— )
3 c+d (b+K)(c+¢)
o= kI A (py— 1) —g)
YT eqd T T ) e+ )
;o O +e'ry _ Vlf/f'_(/’x =) n—1)) )
) c+d (A4 &) (c+ )
- _c+c
Ty = /‘ —4_—}2 .

320.] If neither of the two substances of which the strata are
formed has the rotatory property of Art. 303, the value of any
£ or p will be equal to that of its corresponding @ or ¢. From
this it follows that in the stratified conductor also

=1y Py = 0y Py =g ,
or there is no rotatory property developed by stratification, unless !
it exists in the materials.

321.] If we now suppose that there is no rotatory property, and
also that the axes of 2, y and z are the principal axes, then the
# and ¢ coefficients vanish, and

T o= c————-)’c:-_f;l

ery +¢ry c+ ¢

S

7 4 k
¢4 ¢ 4
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It we begin with hoth substances isotropie, but of different
conductivities, then the result of stratification will he to make
the resistance greatest in the direction of a normal to the strata,
and the resistance in all dircctions in the plane of the strata will
be equal,

822.] Take an isotropie substance of conductivity », cut it into
exceedingly thin slices of thickness «, and place them alternately
with slices of a substance whose conductivity is s, and thickness
£y,

Let these slices be normal to . Then cut this compound con-
ductor into thicker slices, of thickness 4, normal to y, and alternate
these with slices whose conductivity is ¢ and thickness ky .

Lastly, cut the new conductor into still thicker slices, of thick-
ness ¢, normal to 2, and alternate them with slices whose con-
ductivity is ¢ and thickness kye.

The result of the threo operations will be to cut the substance
whose conductivity is » into rectangular parallelepipeds whose
dimensions are a, 4 and ¢, where & is exceedingly small compared
with ¢, and « is exceedingly small compared with 6, and to embed
these parallelepipeds in the substance whose conductivity is s, so
that they are scparated from each other #a in the direction of z,
A6 in that of y, and £yc in that of » The conductivities of the
conductor so formed in the directions of Z, y and z arc

- {144 (1 +4,) (1+4)} 7'+__(€2+£'3+ kyky)s P
Y I A VT BT AW A G . Y

(T 4y) (14 &) (R 7+ )
(L4 A+ Ay Ry) r (A +hyt b byt by Ry 1y 4, ha) 8

(b dy) (b (U b B bys

rm e (LR Ot bt ) o) .
3 ksr+(l+l‘1+1:2+A.~2/l~3+£'3/%,+Krl/l'2+kll'2lfs)s"

The accuracy of this investigation depends upon the three
dimeusions of the parallelepipeds being of different orders of mag-
nitude, so that we may neglect the conditions to be fulfilled at
their edges and angles. If we make 415 £, and %, each unity, then

;o 5r+3&3 , _3r+538 . 2746¢
YT Yy as” 2T 9r4 68" 8= T x7e ?

If » =0, that is, if the medium of which the parallelepipeds
are made is a perfect insulator, then

~i&

= = 5 = B
ro=3%s, 7y = &3, 7= L,

Bho2
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If 7 = %, that is, if the parallelepipeds are perfect conductors,
=3 T, =38, rq = 26.

In every case, provided # = £, = 4,, it may be shewn that
75, 7, and 7y are in ascending order of magnitude, so that the
greatest conductivity is in the direction of the longest dimensions
of the parallelepipeds, and the greatest resistance in the direction
of their shortest dimensions,

823.] In a rectangular parallelepiped of a conducting solid, let
there be a conducting channel made from one angle to the opposite,
the channel being a wire covered with insulating material, and
let the Iateral dimensions of the channel be so small that the
conductivity of the solid is not affected except on account of the
current conveyed along the wire.

Let the dimensions of the parallelepiped in the directions of the
coordinate axes be a, 0, ¢, and let the conductivity of the channel,
extending from the origin to the point (abe), be adek.

The electromotive force acting between the extremities of the

channel is e X+i¥+4cZ
and if €’ be the current along the channel
C'=Kabe(@aX+0Y+c2)

The current across the face de of the parallelepiped is écu, and
this is made up of that due to the conductivity of the solid and
of that due to the conductivity of the channel, or

bew="be(r X+ p,Y+¢,4) + Kabe(@X+6Y + eZ),
or %= (n+Ka*) X+ (pg+Kab) Y + (¢,4 Kca) Z,
In the same way we may find the values of » and w. The

coeflicients of conductivity as altered by the effect of the channel
will be

7, + K a?, ro+ K %, 74+ K2,
M+ Kbe, 2o+ K ca, Dy Kad,
g+ Kbe, ¢.+Kca, g3+ K ul

In these expressions, the additions to the values of P &, due
to the effect of the channel, are equal to the additions to the valucs
of g,, &c. Hence the values of p, and ¢1 cannot be rendered
unequal by the introduction of linear channels into every element
of volume of the solid, and therefore the rotatory property of
Art. 303, if it does not exist previously in a solid, cannot be
introduced by such means.
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824.] To construct a framework of linear conductors which skall
have any given coefflicients of conductivity forming a symmetrical
syslem.

Let the space be divided into cqual small
cubes, of which let the figure represent one.
Let the coordinates of the points O, I, M, N,
and their polentials be as follows :

@ y z  Polential,

0 0 0 0 0

¥/ 0 1 1 0+ Y42,
M 1 0 1 0+2Z+ X,
N 1 1 0 0+X+ 7.

Let these four points be connected by six conductors,
(A OM, ON, MM, NI, LM,
of which the conductivities are respectively
4, B, ¢, P Q, R.
The electromotive forces along these conductors will be
Y+7, Z+X, X+Y, Y-2, 7Z-X, X-7%,
and the currents
A4(Y+2), B(Z+X), C(X+7), P(Y-Z), Q(Z—X), R(X-7Y).
Of these currents, those which convey clectricity in the positive

dircction of z are those along LM, LN, OM and ON, and the
quantity conveyed is

= (B+C+Q+R)X+(C~-R)Y +(B—-Q)Z.
Similarly

v=(C—-R)X +(C+4+R+P)Y 4 (4—P)2Z,

w=(B-Q)X +(4~P)Y +(A+B+P+Q)Z;

whenee we find by comparison with the equations of conduction,
Art. 298,

44 =ty r,—r+2p, 1P =rytrg—r~2p,
4B = 1947 —1,42p, 4Q = ry+r—r,—2p,,
40 = r+7~1r+2p,, 48 =1+ 7,—r3—2p,



CHAPTER X.

-

CONDUCTION IN DIELECTRICS.

825.] WE have seen that when clectromotive force acts on a
dielectric medium it produces in it a state which we have called
electric polarization, and which we have described as consisting
of clectric displacement within the medium in a direction which,
in isotropic media, coincides with that of the electromotive foree,
combined with a superficial charge on every element of volume
into which we may suppose the dielectric divided, which is negative
on the side towards which the force acts, and positive on the side
from which it acts.

When clectromotive force acts on a conducting medium it also
produces what is called an electric current.

Now dielectric media, with very few, if any, exceptions, are
also more or less imperfect conductors, and many media which are
not good insulators exhibit phenomena of dielectric induction.
Hence we are led to study the state of a medium in which induction
and conduction are going on at the same time.

For simplicity we shall supposo the medium isotropic at every
point, but not necessarily homogeneous at different points. In this
case, the equation of Poisson becomes, by Art. 83,

d ,. . dI. d .. dl- d ;. .dT.
7 K ) @(A@)+-([z(ﬁ;{—z—)+41rp=0, (1)
where K is the “specific inductive capacity.’

The ‘ equation of continuity’ of clectrie currents beeomes

L € A P A
@ \r da dy \r dy dz \r dz di
where r is the specifie resistance referred to unit of volume,

When A" or » is discontinuous, these equations must be trans-

formed into those appropriate to surfaces of discontinuity.
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In a strictly homogeneous medium » and X are hoth constant, so
that we find
A2V A2V qrr p dp

—_— — e e = — 3
ar T dy* t i i daltr” )
4r
whenece p = Ce &', (4)
or, if we put r=%7 p=Ce¢ ;'— (5)
) 4")

This result shews that under the action of any external electric
forees on a homogeneous medium, the interior of which is originally
charged in any manner with electricity, the internal charges will
die away at a rate which does not depend on the external forees,
so that at length there will be no chargo of clectricity within
the medium, after which no external forces can either produce or
maintain a charge in any internal portion of the medium, pro-
vided the relation between electromotive force, electric polarization
and conduction remains the same. When disruptive discharge
occurs these relations cease to be true, and internal charge may
be produced.

On Conduction through o Condenser.

326.] Lot € be the capacity of a condenser, R its resistance, and
E the electromotive force which acts on it, that is, the difference of
potentials of the surfaces of the metallic electrodes.

Then the quantity of electricity on the side from which the
electromotive force acts will be CZ, and the current through the
substance of the condenser in the direction of the electromotive

force will be -?1

If the electrification is supposed to be produced by an electro-
motive force 7/ acting in a circuit of which the condenser forms
part, and if %{% represents the current in that circuit, then

Q_T , pdB ®)
dt — R dt
Let a battery of electromotive force E, and resistance r, be
introduced into this cirenit, then
aQ _hL—E I C{LE-

— = 7
= T SERTCG )
Hence, at any time 4,
R _5'}_ CRr,
I (=F)=L) z—— (1~ ‘her = 8
E(=E) ]O]l’-i-?'l (l e 1) where 7} Yy (8)
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Next, let the cireuit 7, be broken for a time tas

-
E(=E)=FE ¢ T where T,= CR. (9)
Finally, let the curfaces of the condenser be connected by means
of a wire whosg resistance is rg for a time Ly,

-3 CRr,
E(=E)=F,e" T where T, = 731-7% . (10)
If @, is the total discharge through this wire in the time tg,
CR2 Ay L6 ~fs
=F —— 22 (177 B {1—e 7). (11
Q5 EO(R‘f"'l)(H'*""s) ( € 1)6 ’( ¢ ”) )

In this way we may find the discharge through a wire which
is made to connect the surfaces of condenser after being charged
for a time ¢, and then insulated for a time #,. If the time of
charging is sufficient, as it generally is, to develope the whole
charge, and if the time of discharge is sufficient for a complete
discharge, the discharge is

g OB - 12
Q“=]’1°(13+7'1)<1i+7'3)8'°‘ (12)

327.] In a condenser of this kind, first charged in any way, next
discharged through a wire of small resistance, and then insulated,
no new electrification will appear. In most actual condensers,
however, we find that after discharge and insulation a new charge
is gradually developed, of the same kind as the original charge,
but inferior in intensity. This is called the residusl charge. To
account for it we must admit that the constitution of the diclectric
medium is different from that which we have just described, We
shall find, however, that 2 medium formed of o conglomeration of
small pieces of different simple media would possess this property.

Theory of a Composite Diclectric.

328.] We shall suppose, for the sake of simplicity, that the
dielectrie consists of a number of plane strata of different materials
and of area unity, and that the clectric forces act in the direction
of the normal to the strata.

Let ay, a,, &ec. be the thicknesses of the different, strata.

Xy, Xy, &e. the resultant electrieal force within each stratum,

P15 P2, &e. the current due to conduction through cach stratum,

J1 /45 &e. the cleetrie displacement..

%y, 0y, &e. the total current, due partly to conduction and partly
to variation of displacement,
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71, 73, &c. the specific resistance referred to unit of volume,

K, K,, &c. the specific inductive capacity.,

k1, &y, &e. the reciprocal of the specific inductive capacity.

£ the electromotive force due to a voltajc battery, placed in
the part of the eircuit leading from the last stratum towards the
first, which we shall suppose good conductors,

Q the total quantity of clectricity which has passed through this
part of the circuit up to the time 2,

R, the resistance of the battery with its connccting wires.

o1 the surface-density of electricity on the surface which separates
the first and second strata.

Then in the first stratum we have, by Ohm’s Law,

& =np,. ‘ (1)
By the theory of electrical displacement,
L= dnh ). (2)
By the definition of the total current,
d,
= p+ —(Zle’ (3)

with similar equations for the other strata, in each of which the
quantities have the suffix belonging to that stratum.
To determine the surface-density on any stratum, we have an

equation of the form o =f— 1, (4)
and to determine its variation we have

do

_{l_;g =P1—P,. (5)

By differentiating (4) with respect to ¢, and equating the result
to (5), we ohtain

d af,
n+ ,]j;‘ =P+ =0 =, say, (6)
or, by taking account of (3),
= u, = &e. = u. (7)

That is, the total current # is the same in all the strata, and ig
equal to the current through the wire and battery,
We have also, in virtue of equations (1) and (2),

1 1 dX,
u=ZXl+r7‘_k17”—, (8)
from which we may find A7 by the inverse operation on ,
1 1 !
E=(tgmpm) v )
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The total electromotive foree # is
F=aq X +a, X, + &e., (10)

S D G S AN UTS SN B el TN
o b= Lo (;, +-1m{:1 (Zt) ey (r2 + A1y (lt) * &c.gu, (11)

an equation between F, the external electromotive force, and #, the
external eirrent,

If the ratio of » to 4 is the same in all the strata, the equation
reduces itsclf to

r dF
sk dt

which is the case we have already examined, and in which, as we
found, no phenomenon of residual charge can take place.

If there are x substances having different ratios of # to 4, the
general equation (11), when cleared of inverse operations, will be
a lincar differential equation, of the nth order with respect to &
and of the (z— 1)th order with respect to #, ¢ being the independent
variable.

From the form of the equation it is evident that the order of
the different strata is indifferent, so that if there arc several strata
of the same substance we may suppose them united into one
without altering the phenomena.

329.] Let us now suppose that at first £, /;, &e. are all zero,
and that an clectromotive force Z is suddenly made to act, and let
us find its instantaneous effect.

Integrating (8) with respect to £, we find

E +

= (uyry+ayry+&e)u, (12)

) 1
Q =fu(l£ = ;.1—_/}1 de + mll+const. (13)

Now, since X} is always in this case finite, f A} d¢ must be in-

sensible when £ is insensible, and therefore, since X, is originally
zero, the instantaneous effect will be

X, = 474 Q. (14)
Henee, by equation (10),
b= 4n(k ay+hya,+ &) Q, (15)

and if C be the electric capacity of the system as measured in this
instantancous way,

Q = ! 16
T by Ry iy &) (16)
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This is the same result that we should have obtained if we had
neglected the conductivity of the strata.

Let us next suppose that the electromotive force B is continued
uniform for an indefinitely long time, or ill g uniform current of
conduction equal to p is established through the system.

We have then X; = »,p, and therefore

B = (ry ay+ryay+ &e.) p. (17)
If B be the total resistance of the system,
=}-Zf= 7-la1+r2a-2+&e. (18)

In this state we have by (2),

v N )
./1 - 4771,1]1

7, r
s0 that Ty = (ﬁ; - 4—_#_1)];, (19)

If we now suddenly connect the extreme strata by means of a
conductor of small resistance, Z' will he suddenly changed from its
original value %, to zero, and a quantity @ of electricity will pass
through the conductor.

To determine @ we observe that if X/’ be the new value of X,

then by (13), X=X +tnk Q. (20)
Hence, by (10), putting £ = o,

0 = alX]+&c.+4n((zlfn'l+a2£r2+&c,) Q, (21)
1

or 0=1F + < Q. (22)

Hence @ =— CZ, where C is the capacity, as given by equation

(16). The instantancous discharge is therefore equal to the in-
stantaneous charge.

Let us next suppose the connexion broken immediately after this
discharge. We shall then have = 0, so that by equation (8),

dmky
=X n, (23)

where X’ is the initial value after the discharge.

Hence, at any time ¢,

_4"’()
X, = B, {—2 - 477&"6'}0 0
The value of 7 at any time is therefore
4k ank,
N =2y -2 L
I'=E, g(\—llTl »—47m,£'10)e 1+ (—,IT —-11r(1.3/c20)e 2 —{r&c.}, (<!
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and the instantancous discharge after any time ¢ is ZC, This is
called the residual discharge.

If the ratio of 7 to 4 is the same for all the strata, the value of
will be reduced to zero. If, however, this ratio is not the same, let
the terms be arranged according to the values of this ratio in
descending order of magnitude.

The sum of all the coeflicients is evidently zero, so that when
t=0, =0, The coofficients are also in descending order of
magnitude, and so are the exponential terms when £ g positive.
Hence, when ¢ is positive, £ will be positive, so that the residual
discharge is always of the same sign as the primary discharge.

When £ is indefivitely great all the terms disappear unless any
of the strata are perfect insulators, in which case r; is infinite for
that stratum,” and R is infinite for the whole system, and the final
value of % is not zero hut

B=F(1—dana k 0), (25)
Henee, when some, but not all, of the strata are perfect insulators,
a residual discharge may be permanently preserved in the system.

330.] We shall next determine the total discharge through a wire
of resistance &, kept permanently in connexion with the extreme
strata of the system, supposing the system first charged by means
of a long-continued application of the electromotive foree .

At any instant we have

B =arp +a, 7y P+ &c.+ Ryu = 0, (26)
and also, by (3), u=p, %’:1 (27)
Henee (B+Ry)n = a; (g:‘ + a7, %CZ +&e. (28)

Integrating with respect to £ in order to find Q, we get

(B+R) Q = ayn, A =) +a,r, (f2 = /12) +&e., (29)

where f] is the initial, and #}" the final value of i
7

In this case // = 0, and /; = E, ('4“;}‘/2"]2"0)'
‘1

B 2 S 7 2
Hence (R+R,) Q= 4{}]‘3 ("{L + “% +&e.)—E,CR, (30)
1 B

CFE 7 7o\ 2
= — R”EE alazlzlkg(»k‘]- —-;2)], (31)

where the summation is extended to all quantities of this form
belonging to every pair of strata,
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It appears from this that @ is always negative, that is to say, in
the opposite direction to that of the current employed in charging
the system.

This investigation shews that a diclectric composed of strata of
different kinds may exhibit the phenomena known as clectric
absorption and residual discharge, although none of the substances
of which it is made exhibit these phenomena when alone. Ap
investigation of the cases in which the materials are arranged
otherwise than in strata would lead to similar results, though
the caleulations would be more complicated, so that we may
conclude that the phenomena of electric absorption may be ex-
pected in the case of substances composed of parts of different
kinds, even though these individual parts should be microscopicull y
small.

It by no means follows that every substance which exhibits this
phenomenon is so composed, for it may indicate a new kind of
electric polarization of which g homogeneous substance may be
capable, and this in some cases may perhaps resemble electro-
chemical polarization much more than dielectric polarization,

The object of the investigation is merely to point out the true
mathematical character of the so-called electric absorption, and to
shew how fundamentally it differs from the phenomena of heat
which seem at first sight analogous,

331.] If we take a thick plate of any substance and heat it
on one side, s0 as to produce a flow of heat through it, and it
we then suddenly cool the heated side to the same temperature
as the other, and leave the Plate to itself, the heated side of the
plate will again become hotter than the other by conduction from
within,

Now an electrical phenomenon exactly analogous to this can
be produced, and actually occurs in telegraph cables, but its mathe-
matical laws, though exactly agreeing with those of heat, ditfer
entircly from those of the stratified condenser,

In the case of heat there is truc absorption of the heat into
the substance with the result of making it hot. To produce a truly
analogous phenomenon in electricity is impossible, but we may
imitate it in the following way in the form of a lecture-room
experiment,

Let 4;, 4,, &e. be the inner conducting surfaces of a series of
condensers, of which By, By, B,, &c. are the onter surfaces.

Let 4,, 4,, &c. be connected in series by conuexions of resist-

m
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ance &, and let a current bo Passed along this series from left to
right.

Let us first suppose the plates By, B,, B,, each insulated and
free from charge, Then the total quantity of electricity on each of
the plates B must remain zero, and since the electricity on the
plates 4 is in each ease equal and opposite to that of the opposed

Fig. 25.

surface they will not he electrified, and no alteration of the current
will be observed.

But let the plates B he al) connected together, or let each be
connecled with the earth, Then, since the potential of 4, is
positive, while that of the plates B is zero, 4, will be positively
electrified and B, negatively,

If P, P,, &ec. are the Potentials of the plates 4y, 4,, &e., and ¢
the capacity of each, and if we suppose that a quantity of electricity
equal to @, passes through the wire on the left, @, through the
connexion &y, aud so on, then the quantity which exists on the
plate 4, is Q,— 1> and we have

Q—@ = G 1.
Similarly ~@, =GP,

and so on.
But by Ohm's Law we have

d
P—p, = 1, %%,

_p 49
Fam Py = B,

If wo suppose the values of ¢ the same for each plate, and thoge
of 2 the same for each wire, we shall have a serjeg of equations of
the form
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@—2Q+Q, = RO%%'

A—20,+Q, = #o%2.

If there are 4 quantities of eleetricity to be determined, and if
either the total electromotive force, or some other equivalent con-
ditions be given, the differential equation for determining any one
of them will be linear and of the th order.

By an apparatus arranged in this way, M, Varley succeeded in
imitating the electrieal action of a cable 12,000 miles long,

When an clectromotive force is made to act along the wire on
the left hand, the electricity which flows into the system is at first
principally occupied in charging the different condensers beginning
with 4,, and only g very small fraction of the current appears
at the right hand till a considerable time has clapsed. If galvano-
meters be placed in cireuit at Ry, R,, &e. they will be affocted
by the current one after another, the interval between the times of
equal indications being greater as we proceed to the right.

332] In the case of a telegraph cable the conducting wire is
separated from conductors outside by a cylindrical sheath of gutta-
percha, or other insulating material. Each portion of the cable
thus becomes a condenser, the outer surface of which is alw: ys at
potential zero. Hence, in a given portion of the cable, the quantity
of free electricity at the surfaco of the conducting wire is equal
to the produet of the potential into the capacity of the portion of
the eable considered as a condenser.

If ¢}, a, are the outer and inner radii of the insulating sheath,
and if X is its specifie diclectric capacity, the capacity of unit of
length of the cable is, by Art. 126,

K

(1)

¢ = 1 (Zl .

2 og;;

Let v be the potential at any point of the wire, which we may
consider as the same at every part of the same section,

Let @ be the total quantity of electricity which has passed

through that section since the beginning of the current. Then the

quantity which at the time ¢ exists between sections at @ and at

z+4 8z, 13 d Ifa)
Q_(Q + Tgaz), or -~ 2—56&',

and this is, by what we have said, equal to cvda.
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Hence oY = — (—Z—Q- (2)

Again, the clectromotive force at any section is — f;’-)-, and by
Ohm’s Law, dv aQ “
3)

where £ is the resistance of unit of length of the conductor, and

(;l/—? is the strength of the current. Eliminating @ hetween (2) and

(3), we find Ao d?p )
ok = dat )
This is the partial differential equation which must be solved
in order to obtain the potential at any instant at any point of the
cable. It is identical with that which Fourier gives to determine
the temperature at any point of a stratum through which heat
is flowing in a direction normal to the stratum. In the case of
heat ¢ represents the capacity of unit of volume, or what Fourier
calls CD, and % represente the reciprocal of the conductivity.
If the sheath is not a perfect nsulator, and if Z, is the resist-
ance of unit of length of the sheath to conduction through it in a
radial direction, then if p, is the specific resistance of the insulating

material, >

41 = 2p log, L. (5)
7y

The equation (2) will no longer be true, for the clectricity is

expended not only in charging the wire to the extent represented
by cv, but in escaping at a rate represented by ,{v- Hence the rate
of expenditure of electricity will be !

a:Q dy 1

T Ga=tat T ®)
whence, by comparison with (3), we get
dv  d%» %

Al ™

and this is the equation of conduction of heat in a rod or ring
as given by Fourier ¥,

333.] If we had supposed that a body when raised to a high
potential becomes electrified throughout its substance as if elec-
tricity were compressed into it, we should have arrived at equa-
tions of this very form. It is remarkable that Ohm himself,

* Thiorie de la Chalenr, art, 105.
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misled by the analogy between clectricity and heat, entertained
an opmion of this kind, and was thus, by means of an erroncous
opinion, led to employ the ecquations of Fomier to express the
trae laws of conduction of clectricity through a long wire, long
hefore the real reason of the appropriateness of these equations had
heen suspeeted.

Aechanical Lllustration of the Propertics of a Dielectric.

334.] Five tubes of equal sectional area 4, B, C, Dand P are
arranged in cireuit as in the figure.

A, B, C and /7 are vertieal and equal, A b 7:\
and 2 is horizontal, - I ',~'\'

The lower halves of 4, B, ¢, D
are filled with mercury, their upper ~
halves and the horizontal tube 7 are
filled with water. 4] ™ ©,

A tube with a stopeock Q con- 4,4 |8, -
neets the lower part of o and B 4 8% [ fo,
with that of C and 7), and a piston ~c,4 Fbo, -
P s made to slide in the horizontal | 5 - 5
tube. ! !

Let us begin by supposing that

t g Y supj g L J

the level of the mereury in the four
tubes is the same, and that it is
indicated by 4,, B,, C,, D,, that
the piston is at 7, and that the Q

stopeock @ is shut. Fig. 26.

Now let the piston he moved from P, to Ly, a distance a. Then,
since the scetions of all the tubes are equal, the level of the mereury
in A and ¢ will vise a distanee «, or to A, and €}, and the mercury
in 3 and D will sink an equal distance a, or to By and D,

The difference of pressure on the two sides of the piston will
be represented by e,

This arrangement may serve to represent the state of a dielectric
acted on by an eleetromotive foree 4 4.

The excess of water in the tube 7 may be taken to represent
a positive charge of eleetricity on one side of the diclectrie, and the
excess of mercury in the tube A may represent the negative charge
on the other side.  The excess of pressure in the tube P on the
side of the piston next 7 will then represent the excess of potential
on the positive side of the diclectric.

VoL, 1. cc
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If the piston is free to move it will move back to 2, and be
in equilibrium there. This represents the complete discharge of
the dielectric.

During the discharge there is a reversed motion of the liquids
throughout the whole tube, and this represents that change of
electric displacement which we have supposed to take place in a
diclectrie, .

T have supposed every part of the system of tubes filled with
incompressible liquids, in order to represent the property of all
electric displacement that there is no real accumulation of clee-
tricity at any place.

Let us now consider the effect of opening the stopeock @ while
the piston P is at 7).

The level of 4, and D, will remain unchanged, but that of B and
C will hecome the same, and will coincide with ) and C,.

The opening of the stopeock @ corresponds to the existence of
a part of the dieleetric which has a slight conducting power, but
which does not extend through the whole dieleetric so as to form
an open channel.

The charges on the opposite sides of the dielectric remain in-
sulated, but their difference of potential diminishes.

In fact, the difference of pressure on the two sides of the piston
sinks from 44 to 2 daring the passage of the fluid through Q.

If we now shut the stopcock @ and allow the piston 2’ to move
freely, it will come to equilibvium at a point 2, and the discharge
will be apparently only half of the charge.

The level of the mercury in .4 and B will be 4z above its
original level, and the level in the tubes € and D will be 4«
below its original level. This is indieated by the levels A,, 5,
Co, D,

If the piston is now fixed and the stopcock opened, mercury will
flow from 78 to C till the level in the two tubes is again at £ and
Cy. There will then be a difference of pressure = « on the two
sides of the piston P, If the stopcock is then closed and the piston
P left free to move, it will again come to equilibrium at a point P,
half way between 2, and £,. This corresponds to the residual
charge which is observed when a charged dielectrie is first dis-
charged and then left to itself. It gradually recovers part of its
charge, and if this is again discharged a third charge is formed, the
successive charges diminishing in quantity. In the case of the
illustrative experiment each charge is half of the preceding, and the
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discharges, which arc 3, 4, &c. of the original charge, form a series
whose sum is equal to the original charge,

If, instead of opening and closing the stopeock, we had allowed it
to remain nearly, hut not quite, closed during the whole experiment,
we should have had a case resembling that of the clectrification of o
diclectriec which is a perfect insulator and yet exhibits the phe-
nomenon called ¢ electrie absorption.’

To represent the ease in which there is rue conduction through
the diclectrie we must either make the piston leaky, or we must
establish a communication between the top of the tube 4 and the
top of the tube D.

In this way we may construct a mechanical illustration of the
properties of a diclectric of any kind, in which the two electricities
are represented by two real fluids, and the electric potential is
represented by fluid pressure. Charge and discharge are repre-
sented by the motion of the piston 2, and electromotive force hy
the resultant foree on the piston.

cc2

’ﬁ



CHAPTER XI.
THE MEASUREMENT OF BLECTRIC RESISTANOE.

835.] In the present state of electrical science, the determination
of the clectrie resistance of a conductor may he considered as the
cardinal operation in electricity, in the same sense that the deter-
mination of weight is the cardinal operation in chemistry.

The reason of this is that the determination in absolute measure
of other electrical magnitudes, such as quantitics of clectricity,
elecfromotive forees, currents, &e., requires in cach case a com-
plicated series of operations, involving generally observations of
time, measurements of distances, and determinations of moments
of inertia, and these operations, or at least some of them, must
be repeated for every new determination, because it s impossible
to preserve a unit of cleetricity, or of eleetromotive force, or of
current, in an unchangeable state, so as to le available for dircot
comparison,

But when the cleetric resistance of a properly shaped conductor
of'a properly chosen material has heen once determined, it is found
that it always remains the same for the same temperature, so that
the conduetor may be used as a standard of resistance, with which
that of other conductors can e compared, and the eomparison of
two resistances is an operation which admits of extreme aceuracy.

When the unit of electrical resistance has been fixed on » material
copies of' this unit, in the form of ‘ Resistance Coils,’ are prepared
for the use of electricians, so that in every part of the world
electrical resistances may bhe expressed in terms of the same unit,
These unit resistance coils are af present the only examples of
material electrie standards which ean be preserved, copied, and used
for the purpose of measurement, Measures of eleetrical capacity,
which are also of great Importance, are still defective, on account
of the disturbing influence of clectric absorption, ‘

336.] The unit of resistance may he an entirely arbitrary one,
as in the case of Jacoli’s Etalon, which was a certain copper
wire of 22,4932 prammes weight, 7.61975 metres length, and 0.667
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millimetres dinmeter.  Copies of this have been made Ly Leyser of
Leipsig, and are to be found in different places,

According to another method the unit may be defined as the
resistance of a portion of a definite substance of definite dimensions.
Thus, Siemens’ unit is defined as the resistance of a column of
mercury of one metre long, and one square millimetre section, at
the temperature 0°C.

837.] IFinally, the unit may be defined with reference to the
clectrostatic or the electromagnetic system of units, In practice
the electromagnetic system is used in all telegraphic operations,
and therefore the only systematic units actually in use are those

of this system.

In the clectromagnetic system, as we shall shew at the proper
place, a resistance is a quantity homogeneous with a velocity, and
may therefore he expressed as a velocity, See Art. 628,

338.7 The first actual measurements on this system were made
by Weber, who employed as his unit one millimetre per second.
Sir W. Thomson afterwards used one foot per second as a unit,
but a large number of clectricians have now agreed to use the
unit of the British Association, which professes to represent a
resistance which, expressed as a velocity, is ten millions of metres
per second. The magnitude of this unit is more convenient than
that of Weber’s unit, which is too small. It is sometimes referred
to as the B.A. unit, but in order to conncct it with the name of
the discoverer of the laws of resistance, it is called the Ohm,

339.] To recollect its value in absolute measure it is useful
to know that ten millions of metres is professedly the distance
from the pole to the equator, measured along the meridian of Paris,
A body, therefore, which in one second travels along a meridian
from the pole to the equator would have a velocity which, on the
electromagnetic system, is professedly represented by an Ohm.

I say professedly, because, if more accurate researches should
prove that the Ohm, as constructed from the British Association’s
material standards, is not really represented by this velocity, clec-
tricians would not alter their standards, but would apply a cor-
rection. In the same way the metre is professedly one ten-millionth
of a certain quadrantal arc, but though this is found not to be
exactly true, the length of the metre has not been altered, but the
dimensions of the earth are expressed by a less simple number,

According to the system of the British Association, the absolute
value of the unit is originally chosen so as to represent as nearly
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as possible u quantity derived from the clectromagnetic absolute
system,

340.] When a material unit representing this abstract, quantity
has been made, other standards are eonstructed by copying this unit,
a process capable of extreme accuracy—of” much greater accuracy
than, for instance, the copying of Loot-rules from a standard foot.

These copies, made of the most permancnt materials, are dis-
tributed over all parts of the world, so that it is not likely that
any difliculty will he found in obtaining copies of them if the
original standards should De Jost.

But such units as that of Siemens can without very great
lahour be reconstrueted with considerable aceuracy, so that as the
relation of the Ohm to Siemens unit is known, the Ohm can he
reproduced even without, having a standard to copy, though the
labour is much greater and the acen acy much less than by the
methed of copying.

Finally, the Ohm may be reproduced
L(_ J by the electromagnetic method by which
it was originally determined, This method,
which is considerably more laborious than
the determination of a foot from the seconds
pendulum, is probably inferior in accuracy
to that last mentioned. On the other hand,
the determination of the clectromagnetic
unit in terms of the Ohm with an amount
of accuracy corresponding to the progress
of clectrical scienee, is a most important
physieal research and well worthy of being
repeated,

The actual resistance coils constructed
to represent the Ohm were made of an
alloy of two parts of silver and one of pla-

- tinum in the form of wires from 5 milli-
metres to .8 millimetres diameter, and from
one to two metres in length, These wires
were soldered to stout copper clectrodes,
The wire itsell was covered with two layers

of silk, imbedded in solid paraflin, and enclosed in a thin brass
case, so that il can be easily brought to a temperature at which
its resistance is aceurately one Ohm.  This temperature is marked

on the insulating support of the coil. (See Iig, 27.)
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On the lorms of Resistunce Coils,

341.] A Resistance Coil is a conductor capable of being casily
placed in the voltaic ecireuit, so as to introduce into the circuit
a known resistance.

The eleetrodes or ends of the coil must be sueh that no appre-
ciable error may arise from the mode of making the connexions.
For resistances of considerable magnitude it is suflicient that the
eleetrodes should be made of stout copper wire or rod well amal-
gamated with mercury at the ends, and that the ends should be
made to press on flat amalgamated copper surfaces placed in mercury
cups.

For very great resistances it is sufficient that the electrodes
should be thick picces of brass, and that the connexions should
be made by inserting a wedge of brass or copper into the interval
between them.  This method is found very convenient.

The resistance coil itself consists of a wire well covered with
silk, the ends of which are soldered permanently to the elec-
trodes,

The coil must be so arranged that its temperature may be easily
observed.  For this purpose the wire is coiled on a tube and
covered with another tube, so that it may be placed in a vessel
of water, and that the water may have aceess to the inside and the
outside of the coil.

To avoid the electromagnetic effects of the current in the coil
the wire is first doubled back on itself and then coiled on the tube,
so that at every part of the coil there are equal and opposite
currents in the adjacent parts of the wire.

When it is desired to keep two coils at the same temperature the
wires are sometimes placed side by side and coiled up together,
This method is especially useful when it is more important to
sccure equality of resistance than to know the absolute value of
the resistance, as in the case of the equal arms of Wheatstone’s
Bridge, (Art. 347).

When mcasurements of resistance were first attempted, o resist-
ance coil, consisting of an uncovered wire coiled in a spiral groove
round a eylinder of insulating material, was much used. Tt was
called a Rheostat.  The accuracy with which it was found possible
to compare resistances was soon found to be inconsistent with the
use of any instrament in which the contacts are not more perfect
than can be obtained in the rheostat. The rheostat, however, is
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still used for adjusting the resistance where accurate measurement, 1s
not required,

Resistance coils are generally made of those metals whose resist-
ance is greatest and which vary least with temperature, German
silver fulfils these conditions vopy well, but some specimens are
found to change their properties during the lapse of years.  Ilence
for standard coils, several pure metals, and alsy an alloy of platinum
and silver, have been em ployed, and the relative resistance of these
during several years has been found constant up to the limits of
modern accuracy.,

342.] For very great resistances, such as several millions of
Ohms, the wire must be either very long or very thin, and the
constraction of the coil ig expensive and diflicult.  1lence tellurium
and selenium have been proposed as materials for constructing
standards of great resistance. A very ingenious and casy method
of construction has heen lately proposed by Phillips*, Oy 4 piece
of chonite or ground glass a fine pencil-line is drawn.,  The ends
of this filament of plumbago are conneeted 1o metallic clectrodes,
and the whole is then covered with insulating varnish, Ir 1
should be found that the resistance of such g peneil-line remains
constant, this will be the best method of obtaining a resistance of
several millions of Ohms,

843.] There are various ar ‘angements by which resistance coils
may beeasily introduced into a eireuit,

For instance, a series of coils of which the resistances are 1, 2,
1, 8, 16, &e., arranged according to the powers of 2, may be placed
In a box in serics, .

AN e
Ty g

! ‘:

61 32 166 &8 94
Fig. 28.

The clectrodes consist of stout brass plates, so arranged on the
outside of the box that by inserting a brass plug or wedge between

* Phit, Mag., July, 1870.
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two of them as a shunt, the resistance of the corresponding coil
may be put out of the cireuit. This arrangement was introduced
by Siemens,

Each interval between the electrodes is marked with the resist-
ance of the corresponding coil, so that if we wish to make the
resistance box equal to 107 we express 107 in the binary seale as
61+32+842+4+1 or 1101011.  We then take the plugs out
of the holes corresponding to 64, 32, 8, 2 and 1, and leave the
plugs in 16 and 4.

This method, founded on the binary seale, is that in which the
smallest number of separate coils is needed, and it is also that
which can be most readily tested. For if we have another coil
cqual to 1 we can test the equality of 1 and U, then that of 14 1
and 2, then that of 141742 and 4, and so on.

The only disadvantage of the arrangement is that it requires
a familiarity with the binary seale of notation, which is not
generally possessed by those accustomed to express every number
in the decimal seale.

344.] A Dbox of resistance coils may be arranged in a different
way for the purpose of mea-
suring conductivities instead of
resistances.

The coils are placed so that
one end of each is conneected
with a long thick picce of
metal which forms one elee-
trode of the box, and the other
end is connected with a stout piece of brass plate as in the former
case.

- LT/’

|

Fig. 29.

The other electrode of the box is a long brass plate, such that
by inserting brass plugs hetween it and the eleetrades of the coils
it may be connceted to the first cleetrode through any given set of
coils. The conductivity of the box is then the sum of the eon-
ductivities of the coils.

In the figure, in which the resistances of the coils are 1, 2, 4, &e.,
and the plugs ave inserted at 2 and 8, the conductivity of the
box is $+% = &, and the resistance of the box is therefore 3
or 1.6,

This method of combining resistance coils for the measurement
of fractional resistances was introduced by Sir W, Thomson under
the name of the method of multiple aves.  Sce Art. 276.
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On the Compa rison of Resistances.

345.] If £ is the electromotive force of a battery, and & the
resistance of the battery and ity connexions, including the gulvan-
ometer used in measuring the current, and if the strength of the
earrent is [ when the battery connexions are closed, and 7, 7,
when additional resistances 15 7y are introduced into the circuit,
then, by Ohm’s Taw,

E=TR=1 (K +r) = Ly (B + 71,).

Eliminating 4, the clectromotive force of the battery, and 2
the resistance of the battery and itg connexions, we get Ohm’s
formula o (I—=1)1,

’Tz> - ({~1) 4 .
This method requires a measurement of the ratios of 7, 1, and 7,
and this implies a galvanometer graduated for absolute men-
surements,

If the resistances 7, and 7y are cqual, then /) and 7, are equal,
and we can test the equality of currents by a galvanometer which
1s not capable of determining their ratios.

But this is rather to he taken as an example of a faulty method
than as a practical method of determining resistance, e eleetro-
motive force & cannot be maintained rigorously constant, and the
internal resistance of the hattery is also exceedingly variable, so
that any methods in which these are assumed to be even for a short,
time constant are not to he depended on.

346.] The comparison of resistances ean he made with_extreme

c
Fig. 3o,

aceuracy by either of two methods, in which the result s in-
dependent, of variations of £ and L.
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The first of these methods depends on the use of the differential
galvanometer, an instrument in which there are two coils, the
currents in which are independent of each other, so that when
the currents are made to flow in opposite directions they act in
opposite dircetions on the needle, and when the rutio of these
currents is that of u to 2 they have no resultant cffect on the
galvanometer needle.

Let 7, I, be the carrents through the two coils of the galvan-
ometer, then the deflexion of the needle may be written

o=uwml—nl,

Now let the battery carrent 7 he divided hetween the coils of
the galvanometer, and let. resistances 4 and B be introduced into
the first and second coils respectively,  Let the remainder of the
resistance of their coils and their connexions he « and B respect-
ively, and let the resistance of the battery and its connexions
between € and 2 be ry and its electromotive force 7.

Then we find, by Ohm’s Law, for the difference of potentials
between C and D,

C—D=1(d+a) = L(B+B) = I/~

and since 1, +1,=1,
_ aB+B _ A +a _ gpdtat+B4p3
]J = j/ _/) ’ j._: —_ /1 ‘—‘7)_ ) I-. I1~ ]) . b
where D= (dta) (B+B)+r (4 +a+ L5+ B).

The deflexion of the galvanometer needle is therefore
5= j; {ne (B4 B)—n(d+a)},

and if there 1s no observable dellexion, then we know that the
quantity enclosed in brackets cannot differ from zero by more than
a certain small quantity, depending on the power of the battery,
the suitableness of the arrangement, the delicacy of the gulvan-
ometer, and the accuracy of the observer,

Suppose that B has been adjusted so that there is no apparent,
deflexion,

Now let. another conductor £ he substituted for A, and let,
A" be adjusted Gl there is no apparent deflexion.  Then evidently
to a first approximation ' = A.

To ascertain the degree of accaracy of this estimale, lot, the
altereld quantities in the second observation he accented, then
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¥/
m (B4 B)—n (d +a) =7,~5,

. v,

A (BAB)—~u (L 4 a) = j,, .
; ’ b,
IIL‘HCL /3 (l '—-4’1) = ’Ib, 0 — :ﬁ"’, ¢,

If & and &, instead of being hoth apparently zero, had Leen only
observed to be equal, then, unless we also could assert that 7 — 1,
the right-hand side of the cquation might not be zero.  In fact,
the method would be a mere modification of that already deseribed,

The merit of the method consists in the fuct that the thing
observed is {he absence of any deflexion, or in other words, the
method is a Null method, one in which the non-existence of a force
15 asserted from an observation in which the force, if it had been
different from zero by more than a certain smull amount, would
have produced an observalle efleet,

Null methods are of great value where they can be employed, hut
they can only be employed where we can cause two equal and
opposite quantitics of the same kind to enter into the experiment,
together.

In the case before us hoth & und & are quantities too small to he
observed, and therefore any change in the value of # will not afliet
the accuraey of the result,

The actual degree of aceuracy of this method might be aseer-
tained by taking a number of observations in cach of which .
is separately adjusted, and comparing the result of each observation
with the mean of the whole series,

But by putting £ out of adjustment by & known uantity, as,
for instance, by inserting at A or at # an additional resistance
cqual to a hundredtl part of A or of £, and then observing
the resulting deviation of the galvanometer needle, we ean ostimaie
the number of degrees corresponding to an error of one per cent,
To find the actual degree of precision we must estimate the smallest
deflexion which could not escape observation, and compare it with
the deflexion due to an errop of one per cent,

*1f the comparison is to he made between A4 and B, and if the
positions of A and B are exchanged, then the second equation
becomes

* This investigation iy taken from Weber's treative on Galvanometry, Gottingen
Transactions, x, p. 5.
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. /.
m(A+B)—n(B+a) = 7 o,
D 5 J)f i
w o

If w and n, A and B, « and g8 are approximately equal, then

whence (m+n)(B—i) =

. 1
B—id = m(;l-}-a) (Ad+a+2r) (5=,

Here 3—3 may be taken to he the smallest observable deflexion
of the galvanometer.

If the galvanometer wire be made longer and thinner, refaining
the same total mass, then 2 will vary as the length of the wire
and a as thesquare of the length,  TIence there will he a minimum
(Ad+a) (A+a+2r)

n

SFYPIES PNV B}
¢ "(1+’)(2 ] 4 (4 r)? b

If we suppose 7, the battery resistanee, small compared with A,

value of when

this gives a=4.;

or, lhe resistance of each coil of the galvanometer should be vne-third
of the resistance to be measured,
We then find
8 A2 ,
B =22L (5w
GOl
If we allow the current to flow through one only of the coils
of the galvanemeter, and if the deflexion therchy produced is A
(supposing the deflexion strietly proportional to the deflecting
foree), then _
wli 3 al

A+va+r 4 A4
]_}—/l _ 256~d
3

fr=0and a = - 4.

W

Henee

e

In the differential galvanometer iwo currents are made to
produce equal and opposite effects on the suspended needle.  The
force with which either current acts on the needle depends not,
ouly on the strength of the current, but on the position of the
windings of the wire with respect to the needle. Henee, unless
the coil is very carefully wound, the ratio of m to » may change
when the position of the ncedle is changed, and therefore it is
necessary to determine this ratio, by proper methods during each
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course of experiments if any alteration of {he position of the needle
Is suspected,

The other null method, in which Whentstone’s Bridge is nsed,
requires only an ordinary galvanometer, and the observed ZeT0
deflexion of the needle s due, not to the opposing action of {wo
currents, hut to the non-existence of a current in the wire, Ience
we have nol merely a null deflexion, but a null current as the
phenomenon observed, and no errors can arise from want of
regularity or change of any kind in the coils of the galvanometer,
The galvanometer js only required to he sensitive enough to defect
the existence and dircetion of a current, without in any way
determining its value or comparing its value with that of another
current,

347.7 Wheatstone’s Bridge consists essentially of six conduetors

connecting four points.  An clectromotive

1 foree 47 is made 1o act hetween two of the
;q\\\\ points by means of a2 voltaie hattery n-
W g troduced between £ and ¢ The current
7 Lot &y between the other two points O and . js
y, {"’,ﬂ/ T measured by a galvanometer,

a/(;/:,[': R -‘Xkc Under certain cirenmstances this current,
£ _— hecomes zero.  The conductors 307 and 0.1

! K. ok,

are then said to be conpugale to cach other,
which implies a certain relation hetween the resistances of the
other four conduetors, and this relation 1s made use of in measuring
resistances.

If' the current in 04 is zero, the potential at O must be equal
to that at 4. Now when we know the potentials at A and ¢ we
an- determine those at 0 aud A by the rule given at Art, 274,
provided there is no carrent in 04,

0 — J)’):_+ C’ﬁ [ = Bl4Ce

B+y ' 77 hge
whence the condition is LB = ey,
where 8, ¢, g, y are the resistances in (., AB, BO and OC re-

spectively.

To determine the degree of accuracy attainable by this method
we must ascertain the strength of the eurrent in 04 when this
condition is not fulfilled exactly.

Let 4, B, C and O be the four points. Let the currents along
BC, C4 and AR he #, g and ¢, and the resistances of these
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conductors «, & and e.

&Em ¢
Ir act along BC. Required the

by the symbols 1, B, C and O.
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Let the currents along O, OB and OC be
and the resistances a, 8 and y.

Liet an electromotive force

current ¢ along 0.4,
Let the potentials at the points 4, B, C and 0 he

denoted

The equations of conduction are

ar = B—-C+F, af=0~4,
by =C—U, By=0-10,
ez = A~4h, y{=0-C;
with the equations of continunity
E+y—z =0,
n+er—a =0,
C+a—y =o.

By considering the system as made up of three circuits 05(,
OCA and OAR in which the currents are T, ¥ & respectively, and
applying Kirchhoff’s rule to each cyele, we climinate the values
of the potentials 0, 4, B, C, and the currents &, G and obtain the

following equations for 2, y and z,
(e+B+y)z—yy —B= =1,
. —v2  +(0+y+ta)y—az = 0,
~
~Be —ay +(+aqp)z =0,
Hence, if we put
D=|at+B+y -y -
-7  b+y+a  —a |,
-~ —a c+a+4p

we find £ = j; (bB—cvy),

and = T+ (4B +a(l t e+ ).

848.7 The valuc of ) may be expressed in the symmetrical form,
D = abe +be (B +y) + ca(yta)+abla+B)+(a+46 + ) (By+yataf)
or, since we suppose the battery in the conductor @ and the
galvanometer in a, we may put B the battery resistance for « and
G the galvanometer resistance for a.  We then find

D=BGUl+et+p+y)+BG+y)(c+8)
+G(C+e) (B+y) +be (B4-y)+By (b +c).

If the electromotive force Z were made to act along 04, the
resistance of O being still a, and if the galvanometer were placed
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in B0, the resistance of BC being still @, then the value of 7
wonld remain the same, and the current in B¢ due to the electro-
motive force F acting along 04 would be equal to the current
in 0./ due to the electromotive foree % acting in BC.

But if" we simply disconneet the battery and the galvanometer,
and without altering their respective resistances connect the battery
to O and A and the galvanometer to /8 and C, then in the value of
D) we must exchange the values of B and 7. If 7 be the value
of D after this exchange, we find

W=D = (G=B) {(h0) (B+ )= (B 4+) (B4 o)},
= (B=G){(b=B)(c=)}.

Let us suppose that the resistance of the galvanometer is greater
than that of the battery,

Let us also suppose that in its original position the galvanometer
conncets the junetion of the two conductors of least resistance g, y
with the junction of the two conductors of greatest resistance 4, c,
or, in other words, we shall suppose that if the quantitics 4, ¢, y, 3
are arranged in order of magnitude, 4 and ¢ stand together, and
y and B stand together. Ilence the quantities 6—pg and c—y are
of the snme sign, so that their product is positive, and therefore
IV — D is of the same sign as B—G.

If therefore the galvanometer is made to conncet the junetion of
the two greatest resistances with that of the two least, and if
the galvanometer resistance is greater than that of the battery,
then the value of 2 will be less, and the value of the deflexion
of the galvanometer greater, than if the connexions are exchanged.

The rule therefore for obtaining the greatest galvanometer de-
flexion in a given system is as follows :

Of the two resistances, that of the battery and that of the
galvanometer, connect the greater resistance so as to join the two
greatest to the two least of the four other resistances.

3490.] We shall suppose that we have to determine the ratio of
the resistances of’ the conductors 48 and A €, and that this is to be
done by finding a point 0 on the conductor BOC, such that when
the points 4 and O are connected by a wire, in the course of which
a galvanometer is inserted, no sensible deflexion of the galvano-
meter needle oceurs when the battery is made to act hetween BB
and C.

The conduetor BOC may be supposed to be a wire of uniform
resistance divided into equal parts, so that the ratio of the resist-
ances of B0 and O0C may he read off at once.
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Instead of the whole conductor being a uniform wire, we may
make the part near 0 of sueh a wire, and the parts on each side
may be coils of any form, the resistance of which is accurately
Lnown,

We shall now use a different, notation instead of the symmetrical
notation with which we commenced.

Let the whole resistance of B4C be J.

Let ¢ = mh and b= (1—u) 2.

Let the whole resistance of #OC e §,

Let B = u8 and y = (1 —u) 8.

The value of # is read off direetly, and that of w is deduced from
it when there is no sensible deviation of the galvanometer.

Let the resistance of the hattery and its connexions he B3, and
that of the galvanometer and its connexions ¢,

We find as before
D = G{BR+ DS+ RSt +m (0 —m) R (B +8)+n (1 —u)S*( B+ )

+ (4 n~2mu)y BRS,
and if ¢ is the current in the galvanometer wire
I
&= ]Illjé (1 —m).

In order to obtain the most accurate results we must make the
deviation of the needle as great as possible compared with the value
of (n—m). 'This may be done by properly choosing the dimensions
of the galvanometer and the standard resistance wire.

It will be shewn, when we come to Galvanometry, Art, 716,
that when the form of a galvanometer wire is changed while
its mass remains constant, the deviation of the needle for unit
current is proportional to the length, but the resistance increases
a3 the square of the length. Ilence the maximum deflexion js
shewn to occur when the resistance of the galvanometer wire is
equal to the constant resistance of the rest of the circuit,

In the present case, if & is the deviation,

8 =CJVG ¢,
where C is some constant, and @ is the galvanometer resistance
which varies as the square of the length of the wire. Hence we
find that in the value of 2, when 8 is a maximum, the part
involving G must be made equal to the rest of the expression.

If we also put m = =, as is the case if we have made a correct
observation, we find the best value of @ to be

G =n(1—n) (R+3).

VOL. I. pd
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This result is easily obtained by eonsidering the resistance from
A to O through the system, remembering that BC, heing conjugate
to 40, has no effect on this resistance,

In the same way we should find {hat if the total area of the
acting surfaces of the battery is given, the most advantageous
arrangement of the battery is when

RS
B= vt

Finally, we shall determine the value of S such that a given
change in the value of » may produce the greatest palvanometer
deflexion. By differentiating the expression for £ we find

BR 7

If we have a great many determinations of resistance to make
in which the actual resistance has nearly the same value, then it
may be worth while to prepare a galvanometer and g battery for
this purpose.  In this case we find that the hest arrangement is

S§=2r, B=1inr, G:Zﬂ(l—ﬁ.)]f.,

andif » = 4, G = 3 R,

On the Use of Wheatstone's Bridge.

850.] We have already explained the general theory of Wheat-
stone’s Bridge, we shall now consider some of jts applieations,

The comparison which can be effeeted with the greatest exact-
ness is that of two equal resistances,
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Let us suppose that 8 is a standard resistance coil, and that
we wish to adjust y to he equal in resistance to 3.

Two other coils, 4 and ¢, are prepared which are equal or nearly
equal to each other, and the four coils are placed with their electrodes
in mercury cups so that the current of the battery is divided
between two branches, one consisting of 3 and y and the other
of 4 and e. The coils 6 and ¢ are ecnneeted by a wire PR, as
uniform in its resistance as possible, and furnished with a scale
of equal parts,

The galvanometer wire conncets the Junetion of g and y with
a point @ of the wire 772, and the point of contact at Q is made
to vary till on closing first the hattery cireuit and then the
galvanometer circuit, no deflexion of the galvanometer needle is
observed,

The coils 8 and y are then made to change places, and a new
position is found for Q. If this new position is the same as the
old one, then we know that the exchange of 8 and y has produced
no change in the proportions of the resistances, and thercfore y
is rightly adjusted. If @ has to be moved, the direction and
amount of the change will indicate the nature and amount of the
alteration of the length of the wire of ¥, which will make its
resistance equal to that of 4.

If the resistances of the coils 4 and ¢, cach including part of the
wire PR up to its zero reading, are equal to that of 4 and ¢
divisions of the wire respectively, then, if = is the seale reading
of Q in the first case, and y that in the second,

ct+a _@_’ ety oy
b—a — Y /’_.’/ - B ’
v Gty
whenee gr = T+ (e+a)(b—y)

Sinee b—y is nearly cqual to ¢4 @, and Dhoth are great with
respect to 2 or y, we may write this

0

Y o= 144777,
L T
y—a
— 2v. ).
and y—ﬁ(l-*"'&_l_c

When y is adjusted as well as we can, we substitute for 4 and ¢
other coils of (say) ten times greater resistance.
The remaining difference between 8 and y will now produce
a ten times greater difference in the position of Q than with the
pda2
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original coils 4 and ¢, and in this Way we can continually increase
the accuracy of the comparison.

The adjustment by means of the wire with sliding contact picee
is more quickly made than by means of g resistance hox, and it is
capable of continuous variation.

The battery must never be introduced instead of the galvano-
meter into the wire with a sliding contact, for the passage of a
powerful current at the point of contact would injure the surface
of the wire. Hence this arrangement js adapted for the case in
which the resistance of the galvanometer is greater than that of the
battery.

On the Measurement of Small Resistances,

851.] When a short and thick conductor js introduced into a
cireuit its resistance is so small compared with the resistance
occasioned by unavoidable faults in the connexions, such as want
of contact or imperfect soldering, that no correct value of the
resistance can he deduced from experi-
ments made in the way described ahove,

The object of such experiments is
generally to determine the specific re-
sistance of the substance, and it is re-
sorted to in cases when the substance
cannot be obtained in the form of a
long thin wire, or when the resistance
to transverse as well as to longitudinal

Fig. 33
conduction has {o be measured.
| r—
S T T ——— T ———-
H ) Q ]
P R
k v’
A i ¢
c
\___-—-—- ————
74
Fig. 34.

Sir W. Thomson,* has described a method applicable to such
cases, which we may take as an example of a system of nine
conductors,

* Proc. R. 8., June 6, 1861,
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The most important part of the method consists in measuring
the resistance, not. of the whole length of the conductor, hut of
the part hetween two marks on the conductor at some little dis-
tance from its ends,

The resistance which we wish to measure is that experienced
by a current whose intensity is wniform in any section of the
conductor, and which flows in a direction parallel to its axis.
Now close to the extremities, when the current js introduced
by means of electrodes, cither soldered, amalgamated, or simply
pressed to the ends of the conductor, there iy generally a want of
uniformity in the distribution of the current in the conductor,
At a short distance from the cxtremities the current hecomes
sensibly uniform. The student may examine for himself the
investigation and the diagrams of Art. 193, where o cnrrent is
introduced into a strip of metal with parallel sides throngh one
of the sides, but soon heecomes itself parallel to the sides.

The resistance of the conductors between certain marks S, 8
and 77" is to be compared.

The conductors are placed in series, and with connexions as
perfectly conducting as possible, in a battery eirenit of small resist-
ance. A wire SF7 is made to touch the conductors at § and 7,
and §777" is another wire touching them at 8§’ and 7",

The galvanometer wire connects the points /“and 77 of these wires.

The wires SF1" and 8’1 are of resistance so great that the
resistance due to imperfect connexion at 8, 1,8 or 1" may be
neglected in comparison with the resistance of the wire, and I, ™
are taken so that the resistunce in the hranches of cither wire
leading to the two conductors are nearly in the ratio of the resist-
ances of the two conductors.

Calling I and P the resistances of the conductors 88" and 7"7!

» 4 and C those of the branches S/ and 77
" P and T those of the branches $77 and 7' ’
" @ that of the connceting piece §77”,

B that of the battery and its connexions,
(7 that of the galvanometer and its connexions,

The symmetry of the system may he understood from the
skeleton diagram. Fig. 33,

The condition that /3 the battery and (7 the galvanometer may
be conjugate conductors is, in this case,
oo R 1 0
Tt e

= (),

D rioin
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Now the resistance of the connector Q is as small as we can
make it. If it were zero this equation would be reduced to
o
¢ iq’
and the ratio of the resistances of the conductors to he compared
would be that of Cto 4, as in Wheatstone’s Bridge in the ordinary
form.

In the present case the value of @ is small compared with 2
or with 2, so that if we assume the points 7', 17 so that the ratio
of I to € is nearly equal to that of P to ., the last term of the
equation will vanish, and we shall have

il C: oA,

The success of this method depends in some degree on the per-
fection of the contact between the wires and the tested conductors
at 88, 7" and 7' In the following method, employed by Messrs,
Matthiessen and Hockin *, this condition is dispensed with.

Fig. 35,

852.] The conductors to be tested are arranged in the manner
already described, with the connexions as well made as possible,
and it is required to compare the resistance between the marks
88" on the first conductor with the resistance between the marks
7" 1" on the sccond.

Two conducting' points or sharp edges are fixed in a picce of
insulating material so that the distance between them can be
accurately measured.  This apparatus is laid on the conductor to
be tested, and the points of contact with the conductor are then
at a known distance 88",  Each of these contact pieces is connected

* Laboratory.  Matthiessen and Hockin un Alloys.
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with a mercury cup, into which one electrode of the galvanometer
may be plunged.

The rest of the apparatus is arranged, as in Wheatstone's Bridge,
with resistance coils or boxes A and C, and a wire PR with a
sliding contact piece @, to which the other electrode of the galva-
nometer is connected.

Now let the galvanometer be connected to § and @, and let
4y and C; be so arranged, and the position of Q so determined, that
there is no current in the galvanometer wire.

Then we know that XS A+PQ

8Y T ¢ ror
where XS, PQ, &c. stand for the resistances in these conductors.
From this we get
XS A4+DQ,
XY =~ 440 +PR

Now let the electrode of the galvanometer be connected to
and let resistance be transferred from € to A (by carrying resistance
coils from one side to the other) till electrie equilibrium of the
galvanometer wire can be obtained by placing @ at some point
of the wire, suy @,. Let the values of € and 4 be now C, and 4,

and let Ayt Gyt PR = A, 4 C+ PR = R,
Then we have, as before,
X§ 4,420,

r= TR
Ane 88" _ dy—ih+ Q) Q,
‘Whence T =

In the same way, placing the apparatus on the second conductor
at 7’7" and again transferring resistance, we get, when the electrode

is in 1",
X717 A+ PQ,
Xy — T nr
and when it is in 7,
X _ A+ PQ,

Xyr— B
T A—A,+Q,0Q
r \ L Ag—dy+ Yy
‘Whence 3¢ ZniEE

We can now deduce the ratio of the resistances §8’ and 7”7, for

S8 _ = 4,+0,0,
77~ A, = 4,49, Q,
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When great accuracy is not required we may dispense with the
resistance coils 4 and €, and we then find

85 _ @10,
T Qy Q,

The readings of the position of Q on a wire of 2 metre in length
cannot be depended on to less than a tenth of a millimetre, and the
resistance of the wire may vary considerably in different parts
owing to inequality of temperature, friction, &e. Tence, when
great accuracy is required, coils of considerable resistance are intro-
duced at A and C, and the ratios of the resistances of these coils
can be determined more acenrately than the ratio of the resistances
of the parts into which the wire is divided at Q.

It will be observed that in this methoed the aceuracy of the
determination depends in no degree on the perfection of the con-
tacts at S8 or 7'7".

This method may be called the differential method of using
Wheatstone’s Bridge, since it depends on the comparison of ob-
servations separately made,

An essential condition of accuracy in this method is that the
resistance of the connexions should continue the same during the
course of the four observations required to complete the determ-
ination. Henee the series of observations ought always {o he
repeated in order to detect any change in the resistances.

On the Comparison of Great Resistances,

358.] When the resistances to be measured are very great, the
comparison of the potentials at diflerent points of the system may
he made by means of a delicate clectrometer, such as the Quadrant,
Electrometer deseribed in Art. 219.

If the conductors whose resistance is to be measured are placed
in series, and the same current passed through them by means of a
battery of great electromotive force, the ditference of the potentials
at the extremities of each conductor will be proportional to the
resistance of that conductor. Ience, by connecting the clect rodes
of the electrometer with the extremities, first of one conductor
and then of the other, the ratio of their resistances may he de-
termined.

This is the most direet method of determining resistances. It
involves the use of an electrometer whose readings may be depended
on, and we must also have some guarantee that the current remains
constant during the experiment.
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Four conductors of great resistance may also be arranged as in
Wheatstone’s Bridge, and the bridge itself may consist of the
clectrodes of an eleetrometer instead of those of a galvanometer,
The advantage of this method is that no permanent current is
required to produce the deviation of the clectrometer, whereas the
galvanometer eannot be deflected unless a current passes through
the wire.

354.7 When the resistance of a conductor is so great that the
current which ean he sent through it by any available eleetromotive
force is too small to be directly measured by a galvanometer, a
condenser may be used in order to accumulate the clectrieity for
a certain time, and then, by discharging the condenser through a
galvanometer, the quantity accumulated may be estimated. This
15 Messrs. Bright and Clark’s method of testing the joints of
submarine cables.

355.] But the simplest method of measuring the resistance of
such a conductor is to charge a condenser of great capacity and to
conneet its two surfaces with the eclectrodes of an clectrometor
and also with the extremities of the conductor. If Z is the dif-
ference of potentials as shewn by the electrometer, § the eapacity
of the condenser, and @ the charge on cither surface, 2 the resist-
ance of the conductor and 2 the eurrent in it, then, by the theory

of condensers, 0=SE
By Ohm’s Law, I = Ra,

and by the definition of a current,

ot
o Q
Hence Q= 1"5717’
!
and Q= Q,¢ 15,

where @, is the charge at first when ¢ = 0.
t

Similarly L= F,e &5
where £y is the original reading of the clectrometer, and £ the
same after a time 4. Irom this we find

14
=, . -

S{log, by —log I}
which gives 2 in absolute measure.  Tn this expression a knowledge
of the value of the unit of the cleetrometer seale is not required,
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It S, the capacity of the condenser, is given in electrostatic
measure as a certain number of metres, then 4 is also given in
electrostatic measure as the reciprocal of a velocity,

If § is given in clectromagnetic measure its dimensions are
-

s and R is a velocity,
v/

Since the condenser itslf is not a perfect insulator it is necessary
to make two experiments. In the first we determine the resistance
of the condenser itself, £, and in the second, that of the condenser
when the conductor is made to connect its surfaces.  Let this be 47,
Then the resistance, &, of the conductor Is given by the equation

1 1 1
REK TR
This method has been employed by MM. Siemens.

Lhomson’s* Method for the Determination Y 'the Resistance of
the Galvanomeler.
856.] An arrangement similar to Wheatstone’s Bridge has heen
employed with advantage by Sir W. Thomson in determining the
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resistance of the galvanometer when in actual use. It was slg-
gested to Sir W, Thomson by Mance’s Method. Sce A, 357.

Let the battery be placed, as before, between 2 und ¢ in the
figure of Article 347, but let the galvanometer be pliced in €
instead of in 0.4, It bB—cy is zero, then the conductor 0. is
conjugate to C, and, as there s no current produced in O by the
battery in £C, the strength of the current in any other conductor

* Proc. It. 8., Jun, 19, 1871.
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Is independent of the resistance in O, Hence, if the galvano-
meter is placed in Cif its deflexion will remain the same whether
the resistance of 0.4 is small or great,  We therefore observe
whether the deflexion of the galvanometer remains the same when
Oand A are joined by a conductor of small resistance, as when
this connexion is broken, and if, by properly adjusting the re-
sistances of the conductors, we obtain this result, we know that
the resistance of the galvanometer is
6=
B3
where ¢, y, und 8 are resistance eoils of known resistance,

It will be observed that though this is not a null method, in the
setse of there being no current in the galvanometer, it is so in
the sense of the fact observed being the negative one, that the
deflexion of the galvanometer is not changed when a certain con-
tact is made.  An observation of this kind is of greater value

than an observation of the equality of two different deflexions of

the same galvanometer, for in the latter case there is time for

alteration in the strength of the battery or the sensitiveness of

the galvanometer, whereas when the deflexion remains constant,
Tt spite of certain changes which we can repeat at pleasure, we are
sure that the current is quite independent of these changes.

The determination of the resistance of the coil of a galvanometer
can casily be effected in the ordinary way of using Wheatstone’s
Bridge by placing another galvanometer in 0.1, By the method
now described the galvanometer itself is employed to measure its
own resistance.

L-]
Munce's* Method of determining the Resistance of the Butlery.

357.] The measurement of the resistunce of a battery when in
action is of 2 much higher order of difliculty, since the resistance
of the battery is found to chaage considerably for some time after
the strength of the current through it is changed.  In many of the
methods commonly used to measure the resistanee of a battery such
alterations of the strength of the current through it occur in the
course of the operations, and therefore the results are rendered
doubtful,

In Mance’s method, which is free from this objection, the battery
is pliced in BC and the galvanometer in .. The connexion
between O and B is then alternately made and broken,

* Lproc. RS, Jan, 19, 1871,

[Se—
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If the deflexion of the galvanometer remains unaltered, we know
that OB is conjugate to (.1, whence ey = wa, and a, the resistance
of the battery, is obtained in terms of known resistances ¢, ¥, .

When the condition ¢y = @ a is fulfilled, then the eurrent through

the galvanometer is
La
! = hagelraty)
and this is independent of the resistance 8 between O and B, To
test the sensibility of the method let us suppose that the condition
¢y = aa is nearly, but not accurately, fulfilled, and that y, is the

N B F
\ >
.~ Gatlranomeler Vs
I g T »/b
\'\
Fig.37.

current through the galvanometer when O and 7 are connected
by a conductor of no sensible resistance, and y, the current when
O and B are completely disconneeted.

To find these values we must make 8 equal to 0 and to % in the
general formula for y, and compare the results.

In this way we find

JoTh e Ccy—aa .
7T y(eta)(aty)
where g, and y, are supposed to be so nearly equal that we may,
when their difference is not in question, put either of them equal
to g, the value of the current when the adjustment is perfect.

The resistance, ¢, of the conductor AB should be equal to «,
that of the battery, a and y, should be equal and as small as
possible, and 4 should be equal to a+y.

Since a galvanometer is most sensitive when its deflexion s
small, we should bring the needle nearly to zero by meuns of fixed
magnets before making contaet between 0 and B,

In this method of measuring the resistance of the lattery, the
current in the battery is not in any way interfered with daring the
operation, so that we may ascertain its resistance for any given
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strength of current, so as to determine how the strength of current
effects the resistance.

If 7 is the current in the galvanometer, the actual current
through the battery is 2, with the key down and 2, with the
key up, where

n=y(1+ aty
the resistance of the battery is
= Q:
a

and the electromotive force of the battery is

1/ ac
) w=s( T )

’ ¢
E=y(bte+ a(é—}—y))»

The method of Art. 356 for finding the resistance of the galva-
nometer differs from this only in making and breaking contact
between O and A instead of Letween O and B, and by exchanging
a and 8 we obtain for this case

Yo—H — B

cy—40f3
Yy (C+B)(B+y)
On the Comparison of Electromotive Forees,

358.] The following method of comparing the electromotive forces
of voltaic and thermoelectric arrangements, when no current passes
through them, requires only a set of resistance coils and a constant
battery.

Let the electromotive foree Z of the battery be greater than that
of either of the electromotors to he compared, then, if a sufficient

(‘W‘G) K

Bl

—HH—

Fig, 38.

resistance, &y, be interposed between the points 4, B, of the
primary circuit £ B, A, F, the electromotive force from B, to 4,
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may be made equal to that of the electromotor ;. If the clec-
trodes of this clectromotor are now connceted with the points
Ay, By no current will flow through the electromotor. By placing
a galvanometer G in the cireuit of the clectromotor %, and
adjusting the resistance between A, and B, till the galvanometer
(7, indicates no current, we obtain the equation

I, = RC,
where 72, is the resistance between o/, and By, and C is the strength
of the current in the primary circuit,

In the same way, by taking a second electromotor %, and placing
its eleetrodes at A, and B,, so that no current is indicated by the
galvanometer @,

F, = R,C,
where 7, is the resistance belween A/, and B,. If the obscrvations
of the galvanometers ) and @, are simultancous, the value of (),
the current in the primary cireuit, is the same in both equations,
and we find
oLy Ry R,

In this way the electromotive foree of two clectromotors may be
compared. The absolute electromotive foree of an eleetromotor
may be measured either electrostatically by means of the clectro-
meter, or clectromagnetically by means of an absolute galvano-
meter,

This method, in which, at the time of the comparison, there
is no current through either of the electromotors, is a madification
of Poggendorfl”s method, and is due to Mr. Latimer Clark, who
has deduced the following values of electromotive forces :

Cx:::ll:l‘tl;:}lﬂtfd Volts,
Dantell T, Amalgamated Zine SO+ 4aq. Cu S0, Copper  =1.079
11 “ SO0+ 1204. C'u S0, Copper  =0.978

11, " S0, +12aq. CuNO,  Copper  =1.00
Bunsen 1. " " " H NO, Carbon  =1.064
11. “" " " sp.g.1.38  Carbon  =1.888
(irore . HS0,+ 4 aq. HNO, Platinnin= 1056

A Volt is an cectromotive force equal to 100,000,000 wnits of the centimetre-gramme-
second system.
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CHAPTER XII.

ON TIHE ELECTRIC RESISTANCE OF SUBSTANCES.

359.] Turrr are three classes in which we may place different
substances in relation to the passage of electricity through them.

The first class contains all the metals and their alloys, some
sulphurets, and other compounds containing metals, to which we
must add carbon in the form of gas-coke, and sclenium in the
erystalline form.

In all these substances conduction takes place withont any
decomposition, or alteration of the chemical nature of the substance,
cither in its interior or where the current enters and leaves the
body. Tn all of them the resistance inereases as the temperature
rises,

The second class consists of substances which are called electro-
lytes, because the current is associated with a decomposition of
the substance into two components which appear at the clectrodes,
As a rule a substance is an electrolyte only when in the liquid
form, though certain colloid substances, such as glass at 100°C,
which are apparently solid, are clectrolytes. It would appear fromn
the experiments of Sir B. C. Brodie that certain gases are capable
of electrolysis by a powerful electromotive force,

In all substances which conduct by electrolysis the resistance
diminishes as the temperature rises.

The third class consists of substances the resistance of which is
ko great that it is only by the most refined methods that the
passage of electricity through them can be detected, These are
called Dielectrics. To this class belong a considerable number
of solid hodies, many of which are clectrolytes when melted, some
liquids, such as turpentine, naphtha, melted paraffin, &e., and all
gases and vapours. Carbon in the form of diamond, and sclenium
in the amorphous form, belong to this class.

The resistance of this class of bodies is enormous compared with
that of the metals. It diminishes as the temperature rises. It
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is difficult, on account of the great resistance of these substances,
to determine whether the feeble current which we ean force through
them is or is not associated with electrolysis,

On the Electric Resistunce of” Metuls.

360.] There is no part of cleetrical rescarch in which more
numerous or more accurate experiments have been made than in
the determination of the resistance of metals. 1t is of the utmost
importance in the clectric telegraph that the metal of which the
wires are made should have the smallest attainable resistuance.
Measurements of resistance must thercfore be made before selecting
the materials.  When any fault occurs in the line, its position is
at once ascertained by measurements of resistance, and these mea-
surements, in which so many persons are now employed, require
the use of resistance coils, made of metal the cleetrical properties
of which have been earefully tested.

The electrical propertics of metals and their alloys have been
studied with great care by MM. Matthicssen, Vogt, and Hockin,
and by MM. Siemens, who have done so much to introduce exact
clectrical measurements into practical work.

It appears from the rescarches of Dr. Matthiessen, that the effect
of temperature on the resistance is nearly the same for a considerable
number of the pure metals, the resistance at 100°C being to that
at 0°C in the ratio of 1.414 to 1, or of 1 to 70.7.  For pure iron
the ratio is 1.645, and for pure thallium 1.458.

The resistance of metals has been observed by Dr. C.W, Sicmens*
through a much wider range of temperature, extending from the
freezing point to 350°C, and in certain cases to 1000°C. He finds
that the resistance increases as the temperature rises, but that the
rate of increase diminishes as the temperature rises. The formula,
which he finds to agree very closely both with the resistances
observed at low temperatures by Dr. Matthiessen and with his
own observations through a range of 1000°C, is

r=al%4+B7T+y,
where 7' is the absolute temperature reckoned from —273°C, and
a, 3, y are constants. Thus, for
Platinum...... r = 0.0393697" 4 0.002164077'—0.2413,

Copper......... 7= 002657714 40.00314437'—0.22751,
Iron............ r = 0.0725457"% +0.00381337'—1.23971.

* Proc. R, 8., April 27, 1871,
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From data of this kind the temperature of a furnace may he
defermined by means of an observation of the resistance of a
platinam wire placed in the furnace.

Dr. Matthicssen found that when two motals are combined to
form an alloy, the resistance of the alloy is in most cases greater
than that calculated from the resistance of the component metals
and their proportions. In the case of alloys of gold and silver, the
resistance of the alloy is greater than that of cither pure gold or
pure silver, and, within certain limiting proportions of the con-
stituents, it varies very little with a slight alteration of the pro-
portions.  For this reason Dr. Matthiessen recommended an alloy
of two parts hy weight of gold and one of silver as a material
for reproducing the unit of resistance.

The effect of change of temperature on electric resistance is
generally less in alloys than in pure metals,

Hencee ordinary resistance coils are made of German silver, on
account of its great resistance and its small variation with tem-
perature,

An alloy of silver and platinum is also used for standard coils.

861.] The clectric resistance of some metals changes when the
metal is annealed; and until a wire has been tested by being
repeatedly raised to a high temperature without permanently
altering its resistance, it cannot be relied on as a mcasure of
resistance.  Some wires alter in resistance in course of time without
having bheen exposed to changes of temperature. Hence it js
important to ascerfain the specific resistance of mereury, a metal
which being fluid has always the same molecular structure, and
which can be easily purified by distillation and treatment with
nitric acid. Great care has been bestowed in determining the
resistance of this metal by W.and C. F. Siemens, who introduced
it as a standard. Their rescarches have heen supplemented by
those of Matthiessen and Hockin.

The specific resistance of mercury was deduced from the observed
resistance of a tube of length / containing a weight » of mercury,
in the following manner,

No glass tube is of exactly equal hore throughout, but if o small
quantity of mercury is introduced into the tube and occupies a
length A of the tube, the middle point of which is distant z from
one end of the tube, then the area s of the section near this point

. C .
will be s = N where € is some constant,.

VOIL. 1. Ee
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The weight of mercury which fills the whole tube is

1\ /
w= pf.ﬂ/d;: pCE(X P

where 2 is the number of points, at equal distances along the

tube, where A has been measurcd, and p is the mass of unit of

volume.
The resistance of the whole tube is

[ r l
R = /—(]J.‘: X (A)=»
Jos c ( )n
where 7 is the specific resistance per unit of volume.

1, ¢
o (e ey Si—-) -
Hence wR=rpI(A\)2 )\) )

wll n?
and 7=

Fams @)

gives the specifie resistance of unit of volume.

To find the resistance of unit of length and unit of mass we must
multiply this by the density.

It appears from the experiments of Matthiessen and Hockin that
the resistance of a uniform column of mercury of one metre in
length, and weighing one gramme at 0°C, is 13.071 Ohms, whence
it follows that if the specifie gravity of mercury is 13.595, the
resistance of a column of one metre in length and one square
millimetre in seetion is 0.96146 Ohms.

362.] Tn the following table R is the resistance in Ohms of a
column one metre long and one gramme weight at 0°C, and 7 is
the resistance in centimetres per second of a cube of one centi-
metre, according to the experiments of Matthiessen *.

Percentage
increment of
Specific resistance for
gravity I » 1°C at 207°C.,
Silver ........ 10.50 hard drawn  0.1689 1609  0.377
Copper .. .... 8.95 hard drawn  0.1469 1642  0.388
Gold .. ...... 1927 hard dvawn  0.4150 2151 0.365
Lead ........ 11.391 pressed 2.257 19847  0.387
Mereury .. ..., 13.595 liquid 13.071 96146 0.072
Gold 2, Silver 1..15.218 hard or annealed 1.668 10988  0.065
Sclenium at 100°C Crystalline form 6x10%  1.00

* Phil. Maq., May, 1565,
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On the Electric Resistance of Flectrolytes.

363.] The measurement of the electrie resistance of clectrolytes
is rendered diflicult on account of the polarization of the clectrodes,
which causes the observed difference of potentials of the metallic
clectrodes to be greater than the electromotive force which actually
produces the current,.

This difficulty can be overcome in various ways. In certain
cases we can get rid of polarization by using electrodes of proper
material, as, for instance, zine clectrodes in a solution of sulphate
of zinc. By making the surface of the clectrodes very large com-
pared with the scction of the part of the cleetrolyte whose resist-
ance is to be measured, and by using only currents of short duration
in opposite directions alternately, we can make the measurements
before any considerable intensity of polarization las been excited
by the passage of the current.

Finally, Ty making two different experiments, in one of which
the path of the current through the electrolyte is much longer than
in the other, and so adjusting the clectromotive force that the
actual current, and the time during which it flows, are nearly the
same in cach case, we can climinate the effect of polarization
altogether.,

364.] In the cxperiments of Dr. Paalzow * {he electrodes were
in the form of large disks placed in separate flut vessels filled with
the clectrolyte, and the connexion was made by means of a long
siphon filled with the electrolyte and dipping into hoth vessels,
Two such siphons of different lengths were used.

The observed resistances of the clectrolyte in these siphons
being 72, and 7,, the siphons were next filled with mercury, and
their resistances when filled with mercury were found to be Vi
and 12,

The ratio of the resistance of the electrolyte to that of a mass
of mercury at 0°C of the same form was then found from the
formula R,—R,

P TR

To deduce from the values of p the resistance of a centimetre in
length having a section of a square centimetre, we must multiply
them by the value of » for mercury at 0°C.  See Art. 361,

¢ Ierlin Monatsbericht, July, 1868,
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The results given by Paulzow arc as follow :—

Mixtures of Sulplwric deid and Water,

Resistance eompared

Temp. with mercury,
H, SO, . 15°C 96950
H,S0, + 14H*0 .... 19°C 14157
H,80, + 13H*0 .... 22°C 13310
H,S0, +499 H?0 . ... 22°C 184773

Sulphate of Zine and Water,

Zn S0, + 23H?0 .... 23°C 194400
ZnS0, + 24 H*O ... 23°C 191000
ZnS0, +105HO .. .. 23°C 351000

Sulphate of Copper and Water.

CuS0, + 45H0 . ... 22°C 202410
CuS0, +105H20 .. .. 22°C 339541

Sulphate of Magnesium and Water.

MgSO, + 34H?0 ..., 22°C 199180
Mg80,+107H*0 . ... 22:C 324600

Hydrochloric Acid and Water.

HCl + 15H*0 .... 23°C 13626
HCl +500H20 .... 23C 86679

365.] MM. F. Kohlrausch and W, A. Nippoldt * have de-
termined the resistance of mixtures of sulphuric acid and water.
They used alternating magncto-clectric currents, the electromotive
force of which varied from } to v¢ of that of a Grove’s cell, and
by means of a thermoelectric copper-iron pair they reduced the
electromotive force to y4%po of that of a Grove’s cell. They found
that Ohm’s law was applicable to this cleetrolyte throughout the
range of these clectromotive forees,

The resistance is & minimum in a mixture containing about one-
third of sulphurie acid.

The resistance of eleetrolytes diminishes as the temperature
increases. The percentage increment of conductivity for a rise of
1°C is given in the following table.

* Pogg., Ann. cxxxviii, p. 286, Oct. 1569,
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Desistance of Mixtures of Sulplwric Adcid and Water at 22°C in terms
of Mercury at 0°C.  MM. Kohlrausch and Nippoldt.

Pereentage

Specific gravity Percentage Rﬁ:’:‘,t,n' réce increment of
nt 18°5 of H, SO, i conductivity
(Hg=1) for 1°C,
0.9985 0.0 746300 0.47
1.00 0.2 465100 0.47
1.050+4 8.3 31530 0.653
1.0989 14.2 18946 0.646
1.1431 20.2 14990 0.799
1.2045 28.0 13133 1.317
1.2631 35.2 13132 1.259
1.3163 41.5 14286 1.410
1.3547 46.0 15762 1.674
1.399-4 50.4 17726 1.582
1.4482 55.2 20796 1.417
1.50206 60.3 25574 1.794

Ou the Eleclrical Resistance of' Diclectries.,

366.] A great number of determinations of the resistance of
gutta-percha, and other materials used us insulating media, in the
manufacture of telegraphic cables, have been made in order to
ascertain the value of these materials as insulators,

The tests are generally applied to the material after it has been
used to cover the conducting wire, the wire being used as one
clectrode, and the water of a tank, in which the cable is plunged,
as the other. Thus the current is made to pass through a cylin-
drical coating of the insulator of great arca and small thickness,

It is found that when the clectromotive force hegins to act, the
current, as indicated by the galvanometer, is by no means constant.
The first effect is of course a transient current. of considerable
intensity, the total quantity of electricity being that required to
charge the surfaces of the insulator with the superficial distribution
of electricity corresponding to the electromotive force. This fivst
current therefore is a measure not of the conductivity, hut of the
apacity of the insulating layer.

But even after this current has been allowed to subside the
residual current is not constant, and does not indicate the true
conductivity of the substance. It is foand that the current con-
tinues to decrease for at least half an hour, so that a determination
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of the resistance deduced from the current will give a greater value
if a certain time is allowed to clapse than if taken immediately after
applying the battery.

Thus, with IIooper’s insulating material the apparent resistance
ab the end of ten minutes was four times, and at the end of
nineteen hours twenty-three times that observed at the end of
one minate. When the direction of the electromotive foree is
reversed, the resistance falls as low or lower than at first and then
gradually rises.

These phenomena seem to he due to a condition of the gutta-
percha, which, for want of a better name, we muy eall polarization,
and which we may compare on the one hand with that of a series
of Leyden jars charged by cascade, and, on the other, with Ritter’s
secondary pile, Art, 271.

If a number of Leyden jars of great capacity are connceted in
series by means of conductors of great resistance (such as wet
cotton threads in the experiments of M. Guugain), then an electro-
motive force acting on the series will produce a éurrent, as indieated
by a galvanometer, which will gradually diminish till the jars are
fully charged.

The apparent resistance of such a series will increase, and if the
diclectric of the jars is a perfect insulator it will increase without
limit, If the cleetromotive force be removed and connexion made
between the ends of the series, a reverse current will be observed,
the total quantity of which, in the case of perfeet insulation, will he
the same as that of the direct current.  Similar effects are observed
in the case of the sccondary pile, with the diflerence that the final
insulation is not so good, and that the capacity per unit of surface
is immensely greater.

In the case of the cable covered with gutta-pereha, &c., it is found
that after applying the battery for half an hour, and then con-
neeting the wire with the external electrode, a reverse current takes
place, which goes on for some time, and gmdually reduces the
system to its original state.

These phenomena are of the same kind with those indicated
by the ‘residual discharge’ of the Leyden jar, except that the
amount of the polarization is much greater in gutta-percha, &e.
than in glass.

This state of polarization seems to be a directed property of the
material, which requires for its production not only clectromotive
force, but the passage, by displacement or otherwise, of a con-
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siderable quantity of clectricity, and {his passage requires a con-
siderable time.  When the polarized state has heen set up, there
is an internal clectromotive foree acting in the substance in the
reverse direction, which will continue il it has cither produced
a reversed current equal in total quantity to the first, or till the
state of polarization has quietly subsided by means of true con-
duction through the substance,

The whole theory of what has been called residual discharge,
absorption of eleetricity, electrification, or polarization, deserves
a carcful investigation, and will probably lead to importaut dis-
coveries relating to the internal structure of hodies,

867.] The resistance of the greater number of dicleetrics dj.
minishes as the temperature rises,

Thus the resistance of gutta-percha is ahout twenty times as great
ab 0°C as at 24°C. Messrs. Bright and Clark have found that the
following formula gives results agreeing with their experiments.
If 7 is the resistance of gutta-percha at temperature 7’ centigrade,
then the resistance at temperature 7'+ £ will be

I =r x 0.8878,
the number varies hetween 0.8878 and 0.9.

M. Hockin has verified the curious fact that it is not until some
hours after the gutta-percha has taken its temperature that the
resistance reaches its corresponding value,

The effect of temperature on the resistance of india-rubber s not
g0 great as on that of gutta-percha,

The resistance of gutta-percha increases considerably on the
application of pressure.

The resistanee, in Ohms, of a cubie metre of various specimens of
gutta-percha used in different cables is as follows *.

Name of Cable,

Red Sea....................... e 267 x 1012 t0 ,362 x 101
Malta-Alexandvia............. .. 1.23 x 1012
Persian Gulf, ... R 1.80 x 1012
Second Atlantic ...... e 3.42 x 1012
Hooper’s Persian Gulf Core...74.7 x 1012
Gutta-percha at 21°C ... .. 3.53 x 1012

368.] The following table, caleulated from the experiments of

* denkin's Cantor Lectures.
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M. Buff, deseribed in Art. 271, shews the resistance of a cubie
metre of glass in Ohms at different temperatures.

Temperature, Resistance.
200°C 227000
250° 13900
300° 1480
350° 1035
400° 735

369.] Mr.C. F. Varley * has recently investigated the conditions
of the current through rarefied gases, and finds that the eleetro-
motive foree 7 is equal to a constant %, together with a part
depending on the current according to Ohm’s Law, thus

F= ]/'7‘,—{- RC.

For instance, the electromotive foree required to cause the
current to begin in a certain tube was that of 323 Daniell’s cells,
but an clectromotive force of 304 cells was just sufficient to
maintain the current. The intensity of the current, as measured
by the galvanometer, was proportional to the number of cells above
304, Thus for 305 cells the deflexion was 2, for 306 it was 4,
for 307 it was 6, and so on up to 380, or 304476 for which the
deflexion was 150, or 76 x 1.97.

From these experiments it appears that there is a kind of
polarization of the eclectrodes, the electromotive force of which
is equal to that of 30-4 Danicll’s cells, and that up to this electro-
motive force the battery is occupied in establishing this state of
polarization.  'When the maximum polarization is established, the
excess of clectromotive force above that of 304 cells is devoted to
maintaining the current according to Ohm’s Law.

The law of the current in & rarefied gas is therefore very similar
to the law of the current through an clectrolyte in which we have
to take account of the polarization of the clectrodes.

In connexion with this subject we should study Thomson’s results,
described in Art. 57, in which the electromotive force required
to produce a spark in air was found to be proportional not to the
distance, but to the distance together with a constant quantity,
The clectromotive force corresponding to this constant quantity
may be regarded as the intensity of polarization of the electrodes,

370.] MM. Wicdemann and Riihlmann have recently + investi-

¢ Proe. RS, Jan. 19, 1671,
t Berichte das Konigl, Sachs, tVesellschafl, Oct, 20, 1871,
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gated the passage of electricity through guses. The clectric current
was produced by Holtz’s machine, and the discharge took place
between spherical cleetrodes within a metallic vessel containing
rarefied gas. The discharge was in general discontinuous, and the
interval of time between successive discharges was measured by
means of a mirror revolving along with the axis of Holtz’s machine.
The images of the series of discharges were observed by means of
a heliometer with a divided object-glass, which was adjusted till
one image of each discharge coincided with the other image of
the next discharge. By this method very consistent results were
obtained. Tt was found that the quantity of electricity in each
discharge is independent of the strength of the current and of
the material of the electrodes, and that it depends on the nature
and density of the gas, and on the distance and form of the
electrodes.

These researches confirm the statement of Faraday * that the
electric tension (sec Art. 48) required to cause a disruptive discharge
to begin at the electrified surface of a conductor is o little less
when the electrification is negative than when it is positive, but
that when a discharge does take place, much more eleetricity passes
at each discharge when it hegins at a positive surface. They also
tend to support the hypothesis stated in Art. 57, that the stratum
of gas condensed on the surface of the electrode plays an important
part in the phenomenon, and they indicate that this condensation
Is greatest ut the positive clectrode.

* Lep. Res., 1501,
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